A Review of the Salivary Proteome and Peptidome and Saliva-derived Peptide Therapeutics

  • N. Laila Huq
  • Keith J. Cross
  • Men Ung
  • Helen Myroforidis
  • Paul D. Veith
  • Dina Chen
  • David Stanton
  • Huiling He
  • Brent R. Ward
  • Eric C. ReynoldsEmail author
Special Issue: Peptides in Oral and Dental Research


Saliva is a glandular secretion that is vital in the maintenance of healthy oral tissues. In this review we outline the high abundance salivary proteins, summarise the status of the salivary proteome and peptidome, the genetic origin and recognised functions of these proteins, the diseases associated with salivary disorders, and the emerging saliva-derived peptide therapeutics. Different proteomic approaches have reported the identification of over 1,300 proteins in saliva. However there are fewer than 100 high abundance proteins, identified by multiple methods including, two-dimensional polyacrylamide gel electrophoresis and HPLC combined with mass spectrometry. Analysis of the genes coding for the salivary proteins demonstrated a non-uniform chromosomal distribution with chromosome 4 having the largest proportion of genes expressed in salivary glands. Several diseases are associated with salivary disorders including Sjögren’s syndrome, Prader-Willi syndrome, dental caries and stress related disorders. Saliva as a diagnostic medium for various biochemical tests has provided a non-invasive and accessibility advantage over other more regularly tested body fluids such as blood and urine. To-date the emerging saliva-based therapeutics include artificial salivas and antimicrobial agents based on histatins and mucins.


Saliva Proteome Peptidome Peptide therapeutics 



We wish to acknowledge the contribution of Priscilla Lu who was a recipient of an ADRF summer scholarship.


  1. Aguirre A, Levine MJ, Cohen RE, Tabak LA (1987) Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. Arch Oral Biol 32:297–301PubMedCrossRefGoogle Scholar
  2. Aguirre A, Testa-Weintraub LA, Banderas JA, Dunford R, Levine MJ (1992) Levels of salivary cystatins in periodontally healthy and diseased older adults. Arch Oral Biol 37:355–361PubMedCrossRefGoogle Scholar
  3. Aguirre A, Testa-Weintraub LA, Banderas JA, Haraszthy GG, Reddy MS, Levine MJ (1993) Sialochemistry: a diagnostic tool? Crit Rev Oral Biol Med 4:343–350PubMedGoogle Scholar
  4. Amerongen AV, Veerman EC (2002) Saliva-the defender of the oral cavity. Oral Dis 8:12–22PubMedCrossRefGoogle Scholar
  5. Amerongen VN, Bolscher JG, Veerman EC (2004) Salivary proteins: protective and diagnostic value in cariology? Caries Res 38:247–253CrossRefGoogle Scholar
  6. Azen EA (1973) Properties of salivary basic proteins showing polymorphism. Biochem Genet 9:69–86PubMedCrossRefGoogle Scholar
  7. Babu JP, Dabbous MK (1986) Interaction of salivary fibronectin with oral streptococci. J Dent Res 65:1094–1100PubMedGoogle Scholar
  8. Baker EN (2005) Lactoferrin. Cell Mol Life Sci 62:2529–2530PubMedCrossRefGoogle Scholar
  9. Beeley J (1993) Fascinating families of proteins: electrophoresis of human saliva. Biochem Soc Trans 21:133–138PubMedGoogle Scholar
  10. Beeley J (2001) Basic proline rich proteins: multifunctional defence molecules? Oral Dis 7:69–70PubMedGoogle Scholar
  11. Beeley JA, Khoo KS, Lamey PJ (1991) Two-dimensional electrophoresis of human parotid salivary proteins from normal and connective tissue disorder subjects using immobilised pH gradients. Electrophoresis 12:493–499PubMedCrossRefGoogle Scholar
  12. Bell JE, Cunningham E, Belt C, Featherstone JDB, Bell J (1997) Examination of the potential structure of human salivary cystatins based on computer modelling. Arch Oral Biol 42:761–772PubMedCrossRefGoogle Scholar
  13. Bennick A (2002) Interaction of plant polyphenols with salivary proteins. Crit Rev Oral Biol Med 13:184–196PubMedCrossRefGoogle Scholar
  14. Bennick A, Mclaughlin A, Grey A, Madapallimattam G (1981) The location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins. J Biol Chem 256:4741–4746PubMedGoogle Scholar
  15. Biesbrock AR, Reddy MS, Levine MJ (1991) Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect Immun 59:3492–3497PubMedGoogle Scholar
  16. Biesbrock AR, Bobek LA, Levine MJ (1997) MUC7 gene expression and genetic polymorphism. Glycoconj J 14:415–422PubMedCrossRefGoogle Scholar
  17. Bobek LA, Tsai H, Biesbrock AR, Levine MJ (1993) Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem 268:20563–20569PubMedGoogle Scholar
  18. Brandtzaeg P (2007) Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann N Y Acad Sci 1098:288–311PubMedCrossRefGoogle Scholar
  19. Carpenter GH, Pankhurst CL, Proctor GB (1999) Lectin binding studies of parotid salivary glycoproteins in Sjogren’s syndrome. Electrophoresis 20:2124–2132PubMedCrossRefGoogle Scholar
  20. Castagnola M, Congiu D, Denotti G, Di Nunzio A, Fadda MB, Melis S, Messana I, Misiti F, Murtas R, Olianas A, Piras V, Pittau A, Puddu G (2001) Determination of the human salivary peptides histatins 1, 3, 5 and statherin by high-performance liquid chromatography and by diode-array detection. J Chromatogr B Biomed Sci Appl 751:153–160PubMedCrossRefGoogle Scholar
  21. Castagnola M, Inzitari R, Rossetti DV, Olmi C, Cabras T, Piras V, Nicolussi P, Sanna MT, Pellegrini M, Giardina B, Messana I (2004) A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J Biol Chem 279:41436–41443PubMedCrossRefGoogle Scholar
  22. Cole MF, Bowen WH, Sierra L, Espinal F, Aguirra M, Kingman A, Kemp LJ, Gomez I, Reilly JA (1978) Immunoglobulins and antibodies in plaque fluid and saliva in two populations with contrasting levels of caries. Adv Exp Med Biol 107:383–392PubMedGoogle Scholar
  23. Cuida M, Halse AK, Johannessen AC, Tynning T, Jonsson R (1997) Indicators of salivary gland inflammation in primary Sjogren’s syndrome. Eur J Oral Sci 105:228–233PubMedCrossRefGoogle Scholar
  24. Dawes C (2004) How much saliva is enough for avoidance of xerostomia? Caries Res 38:236–240PubMedCrossRefGoogle Scholar
  25. DeAngelis A, Huq NL, Lucas J, Cross KJ, Reynolds EC (2002) An exploratory study of saliva from children with high and low caries experience. Aust Dent J 47:S31Google Scholar
  26. Denny PC, Denny PA, Takashima J, Si Y, Navazesh M, Galligan JM (2006) A novel saliva test for caries risk assessment. J Calif Dent Assoc 34:287–290, 292–294PubMedGoogle Scholar
  27. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347PubMedCrossRefGoogle Scholar
  28. Desseyn JL, Buisine MP, Porchet N, Aubert JP, Laine A (1998) Genomic organization of the human mucin gene MUC5B. cDNA and genomic sequences upstream of the large central exon. J Biol Chem 273:30157–30164PubMedCrossRefGoogle Scholar
  29. Dodds MW, Johnson DA, Mobley CC, Hattaway KM (1997) Parotid saliva protein profiles in caries-free and caries-active adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83:244–251PubMedCrossRefGoogle Scholar
  30. Douglas WH, Reeh ES, Ramasubbu N, Raj PA, Bhandary KK, Levine MJ (1991) Statherin: a major boundary lubricant of human saliva. Biochem Biophys Res Commun 180:91–97PubMedCrossRefGoogle Scholar
  31. Edgar WM (1992) Saliva: its secretion, composition and functions. Brit Dent J 172:305–312PubMedGoogle Scholar
  32. Edgar WM, O’Mullane DM (1990) Saliva and dental health: clinical implications of saliva and salivary stimulation for better dental health in the 1990s. British Dental Association, LondonGoogle Scholar
  33. Edgar W, O’Mullane D (1996) Saliva and oral health. British Dental Association, LondonGoogle Scholar
  34. Edgar WM, O’Mullane DM (eds) (2004) Saliva and oral health. British Dental Association, LondonGoogle Scholar
  35. Ericson T, Rundegren J (1983) Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans. Eur J Biochem 133:255–261PubMedCrossRefGoogle Scholar
  36. Ericson D, Bratthall D, Bjorck L, Kronvall G (1982) Beta 2-microglobulin in saliva and its relation to flow rate in different glands in man. Arch Oral Biol 27:679–682PubMedCrossRefGoogle Scholar
  37. Fischer HP, Eich W, Russell IJ (1998) A possible role for saliva as a diagnostic fluid in patients with chronic pain. Semin Arthritis Rheum 27:348–359PubMedCrossRefGoogle Scholar
  38. Ghafouri B, Tagesson C, Lindahl M (2003) Mapping of proteins in human saliva using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics 3:1003–1015PubMedCrossRefGoogle Scholar
  39. Gibbons RJ (1989) Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res 68:750–760PubMedGoogle Scholar
  40. Goebel C, Mackay L, Vickers E, Mather L (2000) Determination of defensin HNP-1, HNP-2 and HNP-3 in human saliva by using LC/MS. Peptides 21:757–765PubMedCrossRefGoogle Scholar
  41. Goobes G, Goobes R, Schueler-Furman O, Baker D, Stayton PS, Drobny GP (2006) Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proc Natl Acad Sci U S A 103:16083–16088PubMedCrossRefGoogle Scholar
  42. Guo T, Rudnick PA, Wang W, Lee CS, Devoe DL, Balgley BM (2006) Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J Proteome Res 5:1469–1478PubMedCrossRefGoogle Scholar
  43. Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG (2001) Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 69:1402–1408PubMedCrossRefGoogle Scholar
  44. Gusman H, Leone C, Helmerhorst EJ, Nunn M, Flora B, Troxler RF, Oppenheim FG (2004) Human salivary gland-specific daily variations in histatin concentrations determined by a novel quantitation technique. Arch Oral Biol 49:11–22PubMedCrossRefGoogle Scholar
  45. Hahn Berg IC, Lindh L, Arnebrant T (2004) Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM. Biofouling 20:65–70PubMedCrossRefGoogle Scholar
  46. Hardt M, Thomas LR, Dixon SE, Newport G, Agabian N, Prakobphol A, Hall SC, Witkowska HE, Fisher SJ (2005a) Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry 44:2885–2899PubMedCrossRefGoogle Scholar
  47. Hardt M, Witkowska HE, Webb S, Thomas LR, Dixon SE, Hall SC, Fisher SJ (2005b) Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal Chem 77:4947–4954PubMedCrossRefGoogle Scholar
  48. Hart PS (1998) Salivary abnormalities in Prader-Willi syndrome. Ann N Y Acad Sci 842:125–131PubMedCrossRefGoogle Scholar
  49. Hatton MN, Loomis RE, Levine MJ, Tabak LA (1985) Masticatory lubrication. The role of carbohydrate in the lubricating property of a salivary glycoprotein-albumin complex. Biochem J 230:817–820PubMedGoogle Scholar
  50. Haworth C (2006) An investigation into the oral health in young individuals with Prader Willi syndrome. School of Dental Science, The University of Melbourne, MelbourneGoogle Scholar
  51. Hay DI, Moreno EC (eds) (1989) Statherin and the acidic proline-rich proteins. CRC Press, Boca RatonGoogle Scholar
  52. Hay DI, Moreno EC, Schleisinger D (1979) Phosphoprotein inhibitors of calcium phosphate precipitation from human salivary secretions. Inorg Persp Biol Med 2:271–285Google Scholar
  53. Hay DI, Smith DJ, Schluckebier SK, Moreno EC (1984) Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. J Dent Res 63:857–863PubMedGoogle Scholar
  54. Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98:14637–14642PubMedCrossRefGoogle Scholar
  55. Helmerhorst EJ, Alagl AS, Siqueira WL, Oppenheim FG (2006) Oral fluid proteolytic effects on histatin 5 structure and function. Arch Oral Biol 51:1061–1070PubMedCrossRefGoogle Scholar
  56. Henskens YMC, Veerman ECI, Mantel MS, Van Der Velden U, Nieuw Amerongen AV (1994) Cystatins S and C in human whole saliva and in glandular salivas in periodontal health and disease. J Dent Res 73:1606–1614PubMedGoogle Scholar
  57. Henskens YM, Van Den Keijbus PA, Veerman EC, Van Der Weijden GA, Timmerman MF, Snoek CM, Van Der Velden U, Nieuw Amerongen AV (1996) Protein composition of whole and parotid saliva in healthy and periodontitis subjects. Determination of cystatins, albumin, amylase and IgA. J Periodontal Res 31:57–65PubMedCrossRefGoogle Scholar
  58. Holmes S (1998) Xerostomia: aetiology and management in cancer patients. Support Care Cancer 6:348–355PubMedCrossRefGoogle Scholar
  59. Horsfall AC, Rose LM, Maini RN (1989) Autoantibody synthesis in salivary glands of Sjogren’s syndrome patients. J Autoimmun 2:559–568PubMedCrossRefGoogle Scholar
  60. Hu S, Denny P, Xie Y, Loo JA, Wolinsky LE, Li Y, Mcbride J, Ogorzalek Loo RR, Navazesh M, Wong DT (2004) Differentially expressed protein markers in human submandibular and sublingual secretions. Int J Oncol 25:1423–1430PubMedGoogle Scholar
  61. Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, Wong DT (2005) Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 5:1714–1728PubMedCrossRefGoogle Scholar
  62. Huang CM (2004) Comparative proteomic analysis of human whole saliva. Arch Oral Biol 49:951–962PubMedCrossRefGoogle Scholar
  63. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow and function. J Pros Dent 85:162–169CrossRefGoogle Scholar
  64. Huq NL, DeAngelis A, Rahim ZHA, Ung M, Lucas J, Cross KJ, Reynolds EC (2004a) Whole and parotid saliva—protein profiles as separated on 5–20% SDS-polyacrylamide gradient gel electrophoresis and using MALDI-TOF mass spectrometry. Ann Dent Univ Malaya 11:424–429Google Scholar
  65. Huq NL, Ung M, Cross KJ, Chen D, Riley P, Veith P, Reynolds EC (2004b) Investigation of saliva with high caries experience. Aust Dent J 49:S13–S14Google Scholar
  66. Huq NL, Campain A, Ung M, Cross KJ, Myroforidis H, DeAngelis A, Lucas J, Stacey M, Howarth CJ, Kilpatrick N, Messer LB, Reynolds EC (2006) Development of a multifaceted salivary database incorporating numerical and pictorial data. J Dent Res 85(Spec Iss B):0604Google Scholar
  67. Huttner KM, Bevins CL (1999) Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 45:785–794PubMedCrossRefGoogle Scholar
  68. Imatani T, Kato T, Minaguchi K, Okuda K (2000) Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol Immunol 15:378–382PubMedCrossRefGoogle Scholar
  69. Inzitari R, Cabras T, Onnis G, Olmi C, Mastinu A, Sanna MT, Pellegrini MG, Castagnola M, Messana I (2005) Different isoforms and post-translational modifications of human salivary acidic proline-rich proteins. Proteomics 5:805–815PubMedCrossRefGoogle Scholar
  70. Inzitari R, Cabras T, Rossetti DV, Fanali C, Vitali A, Pellegrini M, Paludetti G, Manni A, Giardina B, Messana I, Castagnola M (2006) Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics 6:6370–6379PubMedCrossRefGoogle Scholar
  71. Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13:589–595PubMedCrossRefGoogle Scholar
  72. Jensen JL, Lamkin MS, Troxler RF, Oppenheim FG (1991) Multiple forms of statherin in human salivary secretions. Arch Oral Biol 36:529–534PubMedCrossRefGoogle Scholar
  73. Johnson DA, Yeh CK, Dodds MW (2000) Effect of donor age on the concentrations of histatins in human parotid and submandibular/sublingual saliva. Arch Oral Biol 45:731–740PubMedCrossRefGoogle Scholar
  74. Jones KP, Reynolds SP, Gray M, Hughes KT, Rolf S, Davies BH (1994) Salivary PAF in acute myocardial infarction and angina: changes during hospital treatment and relationship to cardiac enzymes. Thromb Res 75:503–511PubMedCrossRefGoogle Scholar
  75. Kaufman E, Lamster IB (2002) The diagnostic applications of saliva: a review. Crit Rev Oral Biol Med 13:197–212PubMedCrossRefGoogle Scholar
  76. Kim HS, Lyons KM, Saitoh E, Azen EA, Smithies O, Maeda N (1993) The structure and evolution of the human salivary proline-rich protein gene family. Mamm Genome 4:3–14PubMedCrossRefGoogle Scholar
  77. Kleinegger CL, Stoeckel DC, Kurago ZB (2001) A comparison of salivary calprotectin levels in subjects with and without oral candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:62–67PubMedCrossRefGoogle Scholar
  78. Kousvelari EE, Baratz RS, Burke B, Oppenheim FG (1980) Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. J Dent Res 59:1430–1438PubMedGoogle Scholar
  79. Lamkin MS, Oppenheim FG (1993) Structural features of salivary function. Crit Rev Oral Biol Med 4:251–259PubMedGoogle Scholar
  80. Lamkin MS, Migliari D, Yao Y, Troxler RF, Oppenheim FG (2001) New in vitro model for the acquired enamel pellicle: pellicles formed from whole saliva show inter-subject consistency in protein composition and proteolytic fragmentation patterns. J Dent Res 80:385–388PubMedCrossRefGoogle Scholar
  81. Liljemark WF, Bloomquist C (1996) Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med 7:180–198PubMedCrossRefGoogle Scholar
  82. Liu B, Offner GD, Nunes DP, Oppenheim FG, Troxler RF (1998) MUC4 is a major component of salivary mucin MG1 secreted by the human submandibular gland. Biochem Biophys Res Commun 250:757–761PubMedCrossRefGoogle Scholar
  83. Loimaranta V, Jakubovics NS, Hytonen J, Finne J, Jenkinson HF, Stromberg N (2005) Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect Immun 73:2245–2252PubMedCrossRefGoogle Scholar
  84. Loomis RE, Prakobphol A, Levine MJ, Reddy MS, Jones PC (1987) Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys 258:452–464PubMedCrossRefGoogle Scholar
  85. Lu P, Ung M, Huq NL, Cross KJ (2005) Bioinformatics of salivary proteins. Aust Dent J 50:S24Google Scholar
  86. Lupi A, Messana I, Denotti G, Schinina ME, Gambarini G, Fadda MB, Vitali A, Cabras T, Piras V, Patamia M, Cordaro M, Giardina B, Castagnola M (2003) Identification of the human salivary cystatin complex by the coupling of high-performance liquid chromatography and ion-trap mass spectrometry. Proteomics 3:461–467PubMedCrossRefGoogle Scholar
  87. MacKay BJ, Pollock JJ, Iacono VJ, Baum BJ (1984) Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun 44:688–694PubMedGoogle Scholar
  88. Mandel ID (1980) Sialochemistry in diseases and clinical situations affecting salivary glands. Crit Rev Clin Lab Sci 12:321–366PubMedCrossRefGoogle Scholar
  89. Messana I, Cabras T, Inzitari R, Lupi A, Zuppi C, Olmi C, Fadda MB, Cordaro M, Giardina B, Castagnola M (2004) Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J Proteome Res 3:792–800PubMedCrossRefGoogle Scholar
  90. Miller CS, King CP Jr, Langub MC, Kryscio RJ, Thomas MV (2006) Salivary biomarkers of existing periodontal disease: a cross-sectional study. J Am Dent Assoc 137:322–329PubMedGoogle Scholar
  91. Mizukawa N, Sugiyama K, Fukunaga J, Ueno T, Mishima K, Takagi S, Sugahara T (1998) Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Res 18:4645–4649PubMedGoogle Scholar
  92. Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T (1999) Levels of human defensin-1, an antimicrobial peptide, in saliva of patients with oral inflammation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:539–543PubMedCrossRefGoogle Scholar
  93. Motegi K, Azuma M, Tamatani T, Ashida Y, Sato M (2005) Expression of aquaporin-5 in and fluid secretion from immortalized human salivary gland ductal cells by treatment with 5-aza-2’-deoxycytidine: a possibility for improvement of xerostomia in patients with Sjogren’s syndrome. Lab Invest 85:342–353PubMedCrossRefGoogle Scholar
  94. Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850PubMedCrossRefGoogle Scholar
  95. Muralidharan R, Bobek LA (2005) Antifungal activity of human salivary mucin-derived peptide, MUC7 12-mer, in a murine model of oral candidiasis. J Pept Res 66:82–89PubMedCrossRefGoogle Scholar
  96. Myroforidis H, Ung M, Stanton D, Ward B, He H, Chen D, Veith P, Huq N, Cross K, Reynolds EC (2007) Binding of casein phosphopeptides to salivary proteins and peptides. Lorne conference on protein structure. Lorne, VictoriaGoogle Scholar
  97. Neyraud E, Sayd T, Morzel M, Dransfield E (2006) Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J Proteome Res 5:2474–2480PubMedCrossRefGoogle Scholar
  98. Nicholas B, Skipp P, Mould R, Rennard S, Davies DE, O’Connor CD, Djukanovic R (2006) Shotgun proteomic analysis of human-induced sputum. Proteomics 6:4390–4401PubMedCrossRefGoogle Scholar
  99. NIDCR (1999) Workshop on development of new technologies for saliva and other oral fluid-based diagnostics. NIDCR, VirginiaGoogle Scholar
  100. Nielsen PA, Bennett EP, Wandall HH, Therkildsen MH, Hannibal J, Clausen H (1997) Identification of a major human high molecular weight salivary mucin (MG1) as tracheobronchial mucin MUC5B. Glycobiology 7:413–419PubMedCrossRefGoogle Scholar
  101. Offner GD, Nunes DP, Keates AC, Afdhal NH, Troxler RF (1998) The amino-terminal sequence of MUC5B contains conserved multifunctional D domains: implications for tissue-specific mucin functions. Biochem Biophys Res Commun 251:350–355PubMedCrossRefGoogle Scholar
  102. Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477PubMedGoogle Scholar
  103. Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ (2007) Salivary proteome and its genetic polymorphisms. Ann N Y Acad Sci 1098:22–50PubMedCrossRefGoogle Scholar
  104. Paquette DW, Simpson DM, Friden P, Braman V, Williams RC (2002) Safety and clinical effects of topical histatin gels in humans with experimental gingivitis. J Clin Periodontol 29:1051–1058PubMedCrossRefGoogle Scholar
  105. Preetha A (2005) Comparison of artificial saliva substitutes. Trends Biomater Artif Organs 18:178–186Google Scholar
  106. Raj PA, Antonyraj KJ (2001) 79th General session of the annual international association of dental research conference. Chiba, JapanGoogle Scholar
  107. Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA (2006) Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 5:1493–1503PubMedCrossRefGoogle Scholar
  108. Rayment SA, Liu B, Offner GD, Oppenheim FG, Troxler RF (2000) Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J Dent Res 79:1765–1772PubMedCrossRefGoogle Scholar
  109. Reddy M, Bobek L, Raszthy G, Biesbrock A, Levine M (1992) Structural features of the low-molecular-mass human salivary mucin. Biochem J 287:639–643PubMedGoogle Scholar
  110. Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M, Buxton DK, Oppenheim FG, Friden P (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45:1367–1373PubMedCrossRefGoogle Scholar
  111. Rudney JD (2000) Saliva and dental plaque. Adv Dent Res 14:29–39PubMedCrossRefGoogle Scholar
  112. Rudney JD, Krig MA, Neuvar EK, Soberay AH, Iverson L (1991) Antimicrobial proteins in human unstimulated whole saliva in relation to each other, and to measures of health status, dental plaque accumulation and composition. Arch Oral Biol 36:497–506PubMedCrossRefGoogle Scholar
  113. Rudney JD, Ji Z, Larson CJ, Liljemark WF, Hickey KL (1995) Saliva protein binding to layers of oral streptococci in vitro and in vivo. J Dent Res 74:1280–1288PubMedCrossRefGoogle Scholar
  114. Ruhl S, Rayment SA, Schmalz G, Hiller KA, Troxler RF (2005) Proteins in whole saliva during the first year of infancy. J Dent Res 84:29–34PubMedCrossRefGoogle Scholar
  115. Ryu OH, Atkinson JC, Hoehn GT, Illei GG, Hart TC (2006) Identification of parotid salivary biomarkers in Sjogren’s syndrome by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis. Rheumatology 45:1077–1086PubMedCrossRefGoogle Scholar
  116. Scannapieco FA (1994) Saliva–bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203–248PubMedGoogle Scholar
  117. Scannapieco FA, Torres G, Levine MJ (1993) Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4:301–307PubMedGoogle Scholar
  118. Schenkels L, Veerman E, Nieuw Amerongen A (1995) Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med 6:161–175PubMedCrossRefGoogle Scholar
  119. Ship JA, Pillemer SR, Baum BJ (2002) Xerostomia and the geriatric patient. J Am Geriatr Soc 50:535–543PubMedCrossRefGoogle Scholar
  120. Soares RV, Lin T, Siqueira CC, Bruno LS, Li X, Oppenheim FG, Offner G, Troxler RF (2004) Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol 49:337–343PubMedCrossRefGoogle Scholar
  121. Streckfus CF, Bigler LR (2002) Saliva as a diagnostic fluid. Oral Dis 8:69–76PubMedCrossRefGoogle Scholar
  122. Stuchell RN, Mandel ID (1978) Studies of secretory IgA in caries-resistant and caries-susceptible adults. In: Mcghee JR, Mestecky J, Babb JL (eds) Secretory immunity and infection. Plenum Press, New YorkGoogle Scholar
  123. Sweet SP, Denbury AN, Challacombe SJ (2001) Salivary calprotectin levels are raised in patients with oral candidiasis or Sjogren’s syndrome but decreased by HIV infection. Oral Microbiol Immunol 16:119–123PubMedCrossRefGoogle Scholar
  124. Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49:3883–3888PubMedCrossRefGoogle Scholar
  125. Teeuw W, Bosch JA, Veerman EC, Amerongen AV (2004) Neuroendocrine regulation of salivary IgA synthesis and secretion: implications for oral health. Biol Chem 385:1137–1146PubMedCrossRefGoogle Scholar
  126. Tenuvuo J (2002) Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis 8:23–29CrossRefGoogle Scholar
  127. Thornton DJ, Khan N, Mehrotra R, Howard M, Veerman E, Packer NH, Sheehan JK (1999) Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9:293–302PubMedCrossRefGoogle Scholar
  128. Troxler RF, Offner GD, Xu T, Vanderspek JC, Oppenheim FG (1990) Structural relationship between human salivary histatins. J Dent Res 69:2–6PubMedGoogle Scholar
  129. Troxler RF, Iontcheva I, Oppenheim FG, Nunes DP, Offner GD (1997) Molecular characterization of a major high molecular weight mucin from human sublingual gland. Glycobiology 7:965–973PubMedCrossRefGoogle Scholar
  130. Tynelius-Bratthall G (1988) Crevicular and salivary fibronectin before and after gingivitis treatment. J Clin Periodontol 15:283–287PubMedCrossRefGoogle Scholar
  131. Tynelius-Bratthall G, Ericson D, Araujo HM (1986) Fibronectin in saliva and gingival crevices. J Periodontal Res 21:563–568PubMedCrossRefGoogle Scholar
  132. Ung M, Huq NL, Cross KJ, Reynolds EC (2006) Saliva, salivary peptidome, and its interaction with casein phosphopeptides. 84th general session of the annual international association of dental research conference. Brisbane, AustraliaGoogle Scholar
  133. Van Dyke T, Paquette D, Grossi S, Braman V, Massaro J, D’agostino R, Dibart S, Friden P (2002) Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis: a phase-2 multi-center study. J Clin Periodontol 29:168–176PubMedCrossRefGoogle Scholar
  134. Vitorino R, Lobo MJ, Ferrer-Correira AJ, Dubin JR, Tomer KB, Domingues PM, Amado FM (2004) Identification of human whole saliva protein components using proteomics. Proteomics 4:1109–1115PubMedCrossRefGoogle Scholar
  135. Walz A, Stühler K, Wattenberg A, Hawranke E, Meyer H, Schmalz G, Blüggel M, Ruhl S (2006) Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 6:1631–1639PubMedCrossRefGoogle Scholar
  136. Wattendorf DJ, Muenke M (2005) Prader-Willi syndrome. Am Fam Physician 72:827–830PubMedGoogle Scholar
  137. Wilmarth PA, Riviere MA, Rustvold DL, Lauten JD, Madden TE, David LL (2004) Two-dimensional liquid chromatography study of the human whole saliva proteome. J Proteome Res 3:1017–1023PubMedCrossRefGoogle Scholar
  138. Won S, Kho H, Kim Y, Chung S, Lee S (2001) Analysis of residual saliva and minor salivary gland secretions. Arch Oral Biol 46:619–624PubMedCrossRefGoogle Scholar
  139. Wong DT (2006) Salivary diagnostics for oral cancer. J Calif Dent Assoc 34:303–308PubMedGoogle Scholar
  140. Xie H, Rhodus NL, Griffin RJ, Carlis JV, Griffin TJ (2005) A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics 4:1826–1830PubMedCrossRefGoogle Scholar
  141. Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG (2003) Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 278:5300–5308PubMedCrossRefGoogle Scholar
  142. Yui S, Nakatani Y, Mikami M (2003) Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 26:753–760PubMedCrossRefGoogle Scholar
  143. Zalewska A, Zwierz K, Zolkowski K, Gindzienski A (2000) Structure and biosynthesis of human salivary mucins. Acta Biochim Pol 47:1067–1079PubMedGoogle Scholar
  144. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • N. Laila Huq
    • 1
  • Keith J. Cross
    • 1
  • Men Ung
    • 1
  • Helen Myroforidis
    • 1
  • Paul D. Veith
    • 1
  • Dina Chen
    • 1
  • David Stanton
    • 1
  • Huiling He
    • 1
  • Brent R. Ward
    • 1
  • Eric C. Reynolds
    • 1
    Email author
  1. 1.Cooperative Research Centre for Oral Health Science, School of Dental Science, Bio21 InstituteThe University of MelbourneMelbourneAustralia

Personalised recommendations