A Synthetic Peptide Based on a Natural Salivary Protein Reduces Demineralisation in Model Systems for Dental Caries and Erosion

  • Jelena KosoricEmail author
  • Ralph Anthony D. Williams
  • Mark P. Hector
  • Paul Anderson
Special Issue: Peptides in Oral and Dental Research

The salivary protein statherin is an inhibitor of spontaneous and secondary precipitation of hydroxyapatite (HAp). It is also detected in enamel pellicle. The N-terminal region of statherin is involved in its adsorption onto tooth surfaces, and, calcium binding. A peptide (StN21) was designed with a 21 amino acid sequence identical to the N-terminus of statherin. The aim was to measure the effect of StN21 on the rate of mineral loss in a model system for dental caries and erosion using HAp subjected to artificial carious and erosive conditions. StN21 was synthesised using Fmoc chemistry. A surface of each HAp block was exposed to solution containing StN21 at concentrations 9.4–376 μmol L−1 (in phosphate buffer) for 24 h. Controls were HAp exposed to buffer only, and HAp exposed to lysozyme. Demineralising solution (0.1 mol L−1 acetic acid, pH 4.5, 1.0 mmol L−1 calcium and 0.6 mmol L−1 phosphate) was circulated past the HAp blocks at 0.4 mL min-1 to mimic carious and erosive conditions. Scanning microradiography was used to measure the rate of mineral loss for demineralisation periods of 3 weeks. The rate of mineral loss of the samples exposed to StN21 was reduced by ∼40% compared to the controls, but no dependence on the concentration of StN21 was observed at the concentrations used. StN21 has been shown to be a potent and stable peptide that has potential as a preventive/therapeutic agent in the treatment of enamel erosion and dental caries.


statherin dentistry saliva demineralisation hydroxyapatite 



X-ray microtomography


[2-(1H-benzotriazol-1yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate] HOBt (N-hydroxybenzotriazol)


methyl-tertiary butylether


trifluoracetic acid



JK gratefully acknowledges financial support through a Wellcome VIP award.


  1. Anderson P., Elliott J.C. (2000) Caries Res. 34(1): 33–40PubMedCrossRefGoogle Scholar
  2. Anderson P., Hector M. P., Rampersad M. A. (2001) Int. J. Paed. Dent. 11: 266–273CrossRefGoogle Scholar
  3. Chadwick, B. and Pendry, L.: 2004, Non-carious dental conditions: Children’s dental health in the United Kingdom. Office of National Statistics UK, October 2004, pp. 1–24Google Scholar
  4. Chan W. C., White P. D. (2000). In: Chan W. C., White P. D. (Eds), Fmoc Solid Phase Peptide Synthesis. University Press, Oxford, pp 9–37Google Scholar
  5. Chin K. O. A., Johnsson M., Bergey E. J., Nancollas G. H. (1993) Colloids Surfaces A 78: 229–234CrossRefGoogle Scholar
  6. Christoffersen J., Christoffersen M. R. (1981) J. Cryst. Growth. 53(1): 42–54CrossRefGoogle Scholar
  7. Combes C., Ray C. (2002) Biomaterials 23: 2817–2823PubMedCrossRefGoogle Scholar
  8. Dawes C., Jenkins G. N., Tonge C. H. (1963) Brit. Dent. J. 115: 65–68Google Scholar
  9. Dawes C. (1969) Arch. Oral. Biol. 14: 277–294PubMedCrossRefGoogle Scholar
  10. Dawes C. (2004). In: Edgar M., Dawes C., O’Mullane D. (Eds), Saliva and Oral Health, 3. British Dental Association, London, pp. 71–85Google Scholar
  11. Dibdin G. H., Poole D. F. G. (1982) Arch. Oral. Biol. 27: 235–241PubMedCrossRefGoogle Scholar
  12. Dowker S. E. P., Elliott J. C., Davis G. R., Wassif H. S. (2003) Caries Res. 37(4): 237–245PubMedCrossRefGoogle Scholar
  13. Edgar W. M. (1992) Br. Dent. J. 172: 305–313PubMedGoogle Scholar
  14. Elliott J. C. (1994). Structure and Chemistry of the Apatites and other Calcium Orthophosphates. Elsevier Science B.V., AmsterdamGoogle Scholar
  15. Elliott J. C. (1997). In: Chadwick D., Cardew G. (Eds), Dental Enamel. Wiley, Chichester, pp. 54–72CrossRefGoogle Scholar
  16. Elliott J. C., Bollet-Quivogne F. R. G., Anderson P., Dowker S. E. P., Wilson R. M., Davies G. R. (2005) Mineral Magazine 69(5): 643–652CrossRefGoogle Scholar
  17. Ferguson D. B. (1999). Oral Bioscience. Churchill-Livingstone, EdinburghGoogle Scholar
  18. Furedi-Milhofer H., Moradian-Oldak J., Weiner S., Veis A., Mintz K. P., Addadi L. (1994) Connect. Tissue Res. 30: 251–264PubMedGoogle Scholar
  19. Gao X. J., Elliott J. C., Anderson P. (1991) Caries Res. 70: 1332–1337Google Scholar
  20. Guo T., Rudnick P. A., Wang W., Lee C. S., Devoe D. L., Balgley B. M. (2006) J Proteome Res. 5(6): 1469–1478PubMedCrossRefGoogle Scholar
  21. Hannig M., Fiebiger M., Guntzer M., Dobert A., Zimehl R., Nekrashevych Y. (2004) Arch. Oral. Biol. 49(11): 903–910PubMedGoogle Scholar
  22. Hay D.I., Moreno E.C. (1989). In: Tenovuo J.O. (Ed), Human Saliva: Clinical Chemistry and Microbiology 2 CRC Press INC., Boca Raton, Florida, pp. 55–91Google Scholar
  23. Hay D. I., Smith D. J., Schluckebier S. K., Moreno E. C. (1984) J. Dent. Res. 68: 857–863Google Scholar
  24. Jensen J. L., Xu T., Lamkin M. S., Brodin P., Aars H., Berg T., Oppenheim F. G. (1994) J. Dent. Res. 73(12): 1811–1817PubMedGoogle Scholar
  25. Kousvelari E. E., Baratz R. S., Burke B. Oppenheim F. G. (1980) J. Dent. Res. 59(8): 1430–1438PubMedGoogle Scholar
  26. Lindh L., Glantz P.-O., Stromberg N., Arnebrant T. (2002) Biofouling 18(2): 1–8CrossRefGoogle Scholar
  27. Long J. R., Shaw W. J., Stayton P. S., Drobny G. P. (2001). Biochemistry. 40(51): 15451–15455PubMedCrossRefGoogle Scholar
  28. Lussi A. (2006) In: Lussi A. (Ed), Dental Erosion: From Diagnosis to Therapy. Monograph Oral Sci, Karger Basel, pp. 1–8Google Scholar
  29. Margolis H. C., Moreno E. C. (1990) Calcif. Tissue Int. 50: 606–613Google Scholar
  30. Margolis H. C., Zhang Y. P., Lee C. Y., Kent R. L., Moreno E. C. (1999) J. Dent. Res. 78(7): 1326–1335PubMedGoogle Scholar
  31. Moreno E. C., Kresak M., Hay D. I. (1991) Biofouling 4: 3–24Google Scholar
  32. Nieuw Amerongen A. V., Veerman E. C. I. (2002) Oral Dis. 8: 12–22CrossRefGoogle Scholar
  33. Poumier F., Schaad Ph., Haikel Y., Voegel J. C., Gramain Ph. (1996) Colloids Surfaces B: Biointerfaces 7: 1–8CrossRefGoogle Scholar
  34. Proctor G. B., Hamdan S., Carpenter G. H., Wilde P. (2005) Biochem J. 389: 111–116PubMedCrossRefGoogle Scholar
  35. Raj P. A., Johnsson M., Levine M. J., Nancollas G. H. (1992) J. Biol. Chem. 267(9): 5968–5976PubMedGoogle Scholar
  36. Report of the joint WHO/FAO Expert Consultation on diet, nutrition and prevention of chronic diseases (Geneva, 28/01–1/02, 2002); WHO technical report, series No. 916 (TRS 916)Google Scholar
  37. Reynolds E. C. (1998) Spec. Care Dentist. 18(1): 8–16PubMedCrossRefGoogle Scholar
  38. Robinson C., Shore R. C., Brookes S. J., Strafford S., Wood S. R., Kirkham J. (2000) Crit. Rev. Oral Biol. Med. 11(4): 481–495PubMedCrossRefGoogle Scholar
  39. Rugg-Gunn A. J. (1993) Nutrition and Dental Health. Oxford Medical Publications, OxfordGoogle Scholar
  40. Rykke M., Smistad G., Rolla G., Karlsen J. (1995) Colloids Surfaces B: Biointerfaces 4: 33–44CrossRefGoogle Scholar
  41. Shellis R. P., Dibdin G. H. (2000). In: Teaford M. F., Meredith-Smith. M., Ferguson M. W. J. (Eds), Development, Function and Evolution of the Teeth. Cambridge, University Press, pp. 242–251Google Scholar
  42. Shomers P., Tabak L. A., Levine M.J. Mandel I.D., Hay D.I. (1982) J. Dent. Res. 61(2): 397–399PubMedGoogle Scholar
  43. Sreebny L. M. (2000) Int. Dent. J. 50: 140–161PubMedGoogle Scholar
  44. Tang R., Hass M., Wu W., Gulde S., Nancollas G. H. (2003) J. Colloid Interface Sci. 260(2):379–384PubMedCrossRefGoogle Scholar
  45. Truin G. J., van Rijkom H. M., Mulder J., van’t Hof M. A. (2005) Caries Res. 39(1): 2–8PubMedCrossRefGoogle Scholar
  46. Wikiel K., Burke E. M., Perich J. W., Reynolds E. C., Nancollas G. H. (1994), Arch. Oral Biol. 39(8): 715–721PubMedCrossRefGoogle Scholar
  47. Zahradnik R. T., Moreno E. C., Burke E. J. (1976) J. Dent. Res. 55(4): 664–670PubMedGoogle Scholar
  48. White D. J. (1995) Adv. Dent. Res. 9(3): 175–193PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jelena Kosoric
    • 1
    Email author
  • Ralph Anthony D. Williams
    • 1
  • Mark P. Hector
    • 1
  • Paul Anderson
    • 1
  1. 1.Centre for Oral Growth and DevelopmentQueen Mary’s School of Medicine and DentistryLondonUK

Personalised recommendations