Antiviral Activity of Antimicrobial Lipopeptide from Bacillus subtilis fmbj Against Pseudorabies Virus, Porcine Parvovirus, Newcastle Disease Virus and Infectious Bursal Disease Virus in Vitro

Bacillus subtilis fmbj can produce lipopeptide antimicrobial substance, whose main components were surfactin and fengycin. In the study, the antiviral activity of antimicrobial lipopeptides (AMLs) from B. subtilis fmbj (CGMCC No. 0934) against Pseudorabies Virus (PRV), Porcine Parvovirus (PPV), Newcastle Disease Virus (NDV) and Infectious Bursal Disease Virus (IBDV) was evaluated in vitro. The AMLs represented a direct inactivation effect on cell-free virus stocks of PRV, PPV, NDV and IBDV, and it could effectively inhibit infection and replication of the NDV and IBDV, but failed to affect PRV and PPV. The AMLs were represented higher toxicity for the Porcine Kidney (PK-15) cells (50% cytotoxic concentration (CC50) value was 32.87 μM) and lower for the Chicken Embryo Fibroblasts (CEF) cells (CC50 value was 89.16 μM). The Selectivity index of AMLs on PRV, PPV, NDV and IBDV was 1.44, 2.23, 8.40 and 12.19, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Albiol Matanic V.C., Castilla V., (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus Int. J. Antimicrob. Agents 23: 382–389

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Andreu D., Rivas L., (1998) Animal antimicrobial peptides: an overview Biopolymers 47: 415–433

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Aranda F.J., Teruel J.A., Ortiz A., (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A Biochim. Biophys. Acta 1713: 51–56

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Baghian A., Kousoulas K.G., (1993) Role of the Na+, K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn 1 mutation to syn+ (wild type) phenotype Virology 196: 548–556

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Batrakov S.G., Rodionova T.A., Esipov S.E., Polyakov N.B., Sheichenko V.I., Shekhovtsova N.V., Lukin S.M., Panikov N.S., Nikolaev Y.A., (2003) A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603 Biochim. Biophys. Acta 1634: 107–115

    PubMed  CAS  Google Scholar 

  6. 6.

    Besson F., Michel G., (1992) Biosynthesis of bacillomycin D by Bacillus subtilis Evidence for amino acid-activating enzymes by the use of affinity chromatography Fed. Eur. Biochem. Soc. 308: 18–21

    CAS  Google Scholar 

  7. 7.

    Bie X., Lu Z., Lu F., Zeng X., (2005) Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp. fmbJ using the Plackett – Burman method World J. Microbiol. Biotechnol. 21: 925–928

    CAS  Article  Google Scholar 

  8. 8.

    Daly N.L., Gustafson K.R., Craik D.J., (2004) The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1 FEBS Lett. 574: 69–72

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Egal M., Conrad M., Macdonald D.L., Maloy W.L., Motley M., Genco C.A., (1999) Antiviral effects of synthetic membrane-active peptides on Herpes Simplex Virus, Type 1 Int. J. Antimicrob. Agents 13: 57–60

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Giansanti F., Massucci M.T., Giardi M.F., Nozza F., Pulsinelli E., Nicolini C., Botti D., Antonini G., (2005) Antiviral activity of ovotransferrin derived peptides Biochem. Biophys. Res. Commun. 331: 69–73

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Gluliano B., Andres H., Luigi C., (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents J. Biotechnol. 5: 1–8

    Google Scholar 

  12. 12.

    Hancock R.E., Chapple D.S., (1999) Peptide antibiotics Antimicrob. Agents Chemother. 43: 1317–1323

    PubMed  CAS  Google Scholar 

  13. 13.

    Hancock R.E.W., Diamond G., (2000) The role of cationic antimicrobial peptides in innate host defences Trends Microbiol. 8: 402–410

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    He H., Shen B., Korshalla J., Carter G.T., (2001) Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154 Tetrahedron 57: 1189–1195

    CAS  Article  Google Scholar 

  15. 15.

    Krajewski K., Marchand C., Long Y.O., Pommier Y., Roller P.P., (2004) Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin Bioorg. Med. Chem. Lett. 14: 5595–5598

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Lorin C., Saidi H., Belaid A., Zairi A., Baleux F., Hocini H., Belec L., Hani K., Tangy F., (2005) The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro Virology 334: 264–275

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Maget-Dana R., Peypoux F., (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties Toxicology 87: 151–174

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Nakayma S., Takahashi M., Hirai M., Shoda M., (1997) Isolation of new variants of surfactin by a recombinant Bacillus subtilis App. Biochem. Biotechnol. 48: 80–82

    Google Scholar 

  19. 19.

    Nicolas P., Mor A., (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates Annu. Rev. Microbiol. 49: 277–304

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Nissen-Meyer J., Nes I.F., (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action Arch. Microbiol. 167: 67–77

    CAS  Article  Google Scholar 

  21. 21.

    Osman M., Hoiland H., Holmsen H., Ishigaml Y., (1998) Tuning micelles of a bioactive heptapeptide biosufactant via extrinsically induced conformational transition of surfactin assemly J. Pept. Sci. 4: 449–458

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Peypoux F., Marion D., Maget-Dana R., Ptak M., Das B.C., Michel G., (1985) Structure of bacillomycin F, a new pepdolipid antibiotic of the iturin group Eur. J. Biochem. 153: 335–340

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Phae G.P., Shoda S., Kubota K., (1990) Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69: 1–7

    CAS  Article  Google Scholar 

  24. 24.

    Rowley D.C., Kelly S., Jensen P., Fenical W., (2004) Synthesis and structure-activity relationships of the halovirs, antiviral natural products from a marine-derived fungus Bioorg. Med. Chem. 12: 4929–4936

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Thennarasu S., Lee D.K., Tan A., Kari U.P., Ramamoorthy A., (2005) Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843 Biochim. Biophys. Acta 1711: 49–58

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Tsuge K., Ano T., Shoda M., (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8 Arch. Microbiol. 165: 243–251

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Wachsman M.B., Lopez E.M., Ramirez J.A., Galagovsky L.R., Coto C.E., (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses Antiviral Chem. Chemother. 11: 71–77

    CAS  Google Scholar 

  28. 28.

    Wong J.H., Ng T.B., (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase Peptides 26: 1120–1126

    PubMed  CAS  Article  Google Scholar 

Download references


The authors would like to thank the financial support from High-Tech fund of Jiangsu Province, P.R.China (BG2003311).

Author information



Corresponding author

Correspondence to Zhaoxin Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, X., Lu, Z., Zhao, H. et al. Antiviral Activity of Antimicrobial Lipopeptide from Bacillus subtilis fmbj Against Pseudorabies Virus, Porcine Parvovirus, Newcastle Disease Virus and Infectious Bursal Disease Virus in Vitro . Int J Pept Res Ther 12, 373–377 (2006).

Download citation


  • AMLs
  • Bacillus sp. fmbj
  • Infectious Bursal Disease Virus
  • Newcastle Disease Virus
  • Porcine Parvovirus
  • Pseudorabies Virus