Chitosan-dextran Sulfate Nanoparticles for Delivery of an Anti-angiogenesis Peptide

Abstract

A novel nanoparticle delivery system has been developed by employing the oppositely charged polymers chitosan (CS) and dextran sulfate (DS), and a simple coacervation process. Under the conditions investigated, the weight ratio of the two polymers is identified as a determining factor controlling particle size, surface charge, entrapment efficiency and release characteristics of the nanoparticles produced. Particles of 223 nm mean diameter were produced under optimal conditions with a zeta potential of approximately −32.6 mV. A maximum of 75 anti-angiogenesis peptide entrapment efficiency was achieved with a CS:DS weight ratio of 0.59:1. The same nanoparticle formulation also showed slow and sustained peptide release over a period of 6 days. In contrast, the formulation containing a lower ratio of CS:DS (0.5:1) was found to have reduced entrapment efficiency and more rapid peptide release characteristics. The results of this study suggest that physicochemical and release characteristics of the CS–DS nanoparticles can be modulated by changing ratios of two ionic polymers. The novel CS–DS nanoparticles prepared by the coacervation process have potential as a carrier for small peptides.

This is a preview of subscription content, access via your institution.

References

  1. W. Paul C.P. Sharma (2000) S.T.P. Pharma Sci. 10 5 Occurrence Handle1:CAS:528:DC%2BD3cXit12lurw%3D

    CAS  Google Scholar 

  2. K.A. Janes P. Calvo M.J. Alonso (2001) Adv. Drug Deliv. Rev. 47 83 Occurrence Handle10.1016/S0169-409X(00)00123-X Occurrence Handle1:CAS:528:DC%2BD3MXhvVajsrY%3D Occurrence Handle11251247

    Article  CAS  PubMed  Google Scholar 

  3. Y. Xu Y. Du (2003) Int. J. Pharm. 250 215 Occurrence Handle10.1016/S0378-5173(02)00548-3 Occurrence Handle1:CAS:528:DC%2BD38Xpt12qsb8%3D Occurrence Handle12480287

    Article  CAS  PubMed  Google Scholar 

  4. J.L. Chew C.B. Wolfowicz H.-Q. Mao K.W. Leong K.Y. Chua (2003) Vaccine 21 2720 Occurrence Handle10.1016/S0264-410X(03)00228-7 Occurrence Handle1:CAS:528:DC%2BD3sXksVyrurY%3D Occurrence Handle12798609

    Article  CAS  PubMed  Google Scholar 

  5. H.-Q. Mao K. Roy V.L. Troung-Le K.A. Janes K.Y. Lin Y. Wang J.T. August K.W. Leong (2001) J. Cont. Rel. 70 399 Occurrence Handle1:CAS:528:DC%2BD3MXhtV2murs%3D

    CAS  Google Scholar 

  6. H. Takeuchi H. Yamamoto Y. Kawashima (2001) Adv. Drug Deliv. Rev. 47 39 Occurrence Handle10.1016/S0169-409X(00)00120-4 Occurrence Handle1:CAS:528:DC%2BD3MXhvVajsrs%3D Occurrence Handle11251244

    Article  CAS  PubMed  Google Scholar 

  7. Y. Chen R.K. McCulloch B. N. Gray (1994) J. Cont. Rel. 31 49 Occurrence Handle1:CAS:528:DyaK2cXlsVWnsrc%3D

    CAS  Google Scholar 

  8. K.A. Janes M.P. Fresneau A. Marazuela A. Fabra M.J. Alonso (2001) J. Cont. Rel. 73 255 Occurrence Handle1:CAS:528:DC%2BD3MXksVSqur0%3D

    CAS  Google Scholar 

  9. W. Tiyaboonchai J. Woiszwillo C.R. Middaugh (2003) Eur. J. Pharm. Sci. 19 191 Occurrence Handle1:CAS:528:DC%2BD3sXls1Onu7Y%3D Occurrence Handle12885383

    CAS  PubMed  Google Scholar 

  10. W. Tiyaboonchai J. Woiszwillo R.C. Sims C.R. Middaugh (2003) Int. J. Pharm. 255 139 Occurrence Handle10.1016/S0378-5173(03)00055-3 Occurrence Handle1:CAS:528:DC%2BD3sXisVGks7w%3D Occurrence Handle12672610

    Article  CAS  PubMed  Google Scholar 

  11. M. Tobio R. Gref A. Sanchez R. Langer M.J. Alonso (1998) Pharm. Res. 15 270 Occurrence Handle1:CAS:528:DyaK1cXhsFCntL0%3D Occurrence Handle9523314

    CAS  PubMed  Google Scholar 

  12. Q. Zhang Z. Shen T. Nagai (2001) Int. J. Pharm. 218 75 Occurrence Handle10.1016/S0378-5173(01)00614-7 Occurrence Handle1:CAS:528:DC%2BD3MXjtV2ltr8%3D Occurrence Handle11337151

    Article  CAS  PubMed  Google Scholar 

  13. D.Q. Guerrero E. Allemann H. Fessi E. Doelker (1988) Drug Dev. Ind. Pharm. 24 1113

    Google Scholar 

  14. D.G. Bae Y.S. Gho W.H. Yoon C.B. Chae (2000) J. Biol. Chem. 275 13588 Occurrence Handle1:CAS:528:DC%2BD3cXjtFyktLg%3D Occurrence Handle10788475

    CAS  PubMed  Google Scholar 

  15. P. Calvo C. Remunan-Lopez J.L. Vila-Jato M.J. Alonso (1997) Pharm. Res. 14 1431 Occurrence Handle10.1023/A:1012128907225 Occurrence Handle1:CAS:528:DyaK2sXntFeht7g%3D Occurrence Handle9358557

    Article  CAS  PubMed  Google Scholar 

  16. T. Bantan-Polak M. Kassai K.B. Grant (2001) Anal. Biochem. 297 128 Occurrence Handle10.1006/abio.2001.5338 Occurrence Handle1:CAS:528:DC%2BD3MXnslWgs70%3D Occurrence Handle11673879

    Article  CAS  PubMed  Google Scholar 

  17. P. Calvo C. Remunan-Lopez J.L. Vila-Jato M.J. Alonso (1997) J. Appl. Poly. Sci. 63 125 Occurrence Handle10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4 Occurrence Handle1:CAS:528:DyaK2sXhvV2rug%3D%3D

    Article  CAS  Google Scholar 

  18. R. Fernandez-Urrusuno P. Calvo C. Remunan-Lopez J.L. Vila-Jato M.J. Alonso (1999) Pharm. Res. 6 1576

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Y., Mohanraj, V.J. & Parkin, J.E. Chitosan-dextran Sulfate Nanoparticles for Delivery of an Anti-angiogenesis Peptide. Int J Pept Res Ther 10, 621–629 (2003). https://doi.org/10.1007/s10989-004-2433-4

Download citation

Keywords

  • chitosan
  • dextran sulphate
  • nanoparticles
  • peptide delivery
  • sustained-release