Skip to main content
Log in

Surface plasmon resonance analysis of antimicrobial peptide–membrane interactions: affinity & mechanism of action

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are being increasingly recognised as potential candidates for antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years. However, a precise understanding of the relationship between antimicrobial peptide structure and their cytolytic function in a range of organisms is still lacking. This is a result of the complex nature of the interactions of antimicrobial peptides with the cell membrane, the mechanism of which can vary considerably between different classes of antimicrobial peptides. A wide range of biophysical techniques have been used to study the influence of a number of peptide and membrane properties on the cytolytic activity of these peptides model membrane systems. Until recently, however, very few studies had reported measurements of the affinity of antimicrobial peptides for different membrane systems mainly due to the difficulty in obtaining this information. Surface plasmon resonance (SPR) spectroscopy has recently been applied to the study of biomembrane-based systems which has allowed a real-time analysis of binding affinity and kinetics. This mini review provides an overview of the recent applications that demonstrate the potential of SPR to study the membrane interactions of antimicrobial peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shai, Y., Biochim. Biophys. Acta, 1462 (1999) 55.

    CAS  PubMed  Google Scholar 

  2. Matsuzaki, K., Biochim. Biophys. Acta. 1376 (1998) 391.

  3. Monette, M. and Lafleur, M., Biophys. J., 68 (1995) 187.

    CAS  PubMed  Google Scholar 

  4. Blondelle, S.E., Lohner, K. and Aguilar, M., Biochim. Biophys. Acta, 1462 (1999) 89.

    CAS  PubMed  Google Scholar 

  5. Zasloff, M., Nature, 415 (2002) 389.

    Article  CAS  PubMed  Google Scholar 

  6. Yeaman, M.R. and Yount, N.Y., Pharmacol. Rev., 55 (2003) 27.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzaki, K., Sugishita, K., Fujii, N. and Miyajima, K., Biochemistry, 34 (1995) 3423.

    CAS  PubMed  Google Scholar 

  8. Vaara, M., Microbiol. Rev., 56 (1992) 395.

    CAS  PubMed  Google Scholar 

  9. Dempsey, C.E., Biochim. Biophys. Acta, 1031 (1990) 143.

    CAS  PubMed  Google Scholar 

  10. Bechinger, B., Biochim. Biophys. Acta, 1462 (1999) 157.

    CAS  PubMed  Google Scholar 

  11. Tossi, A., Sandri, L. and Giangaspero, A., Biopolymers, 55 (2000) 4.

    CAS  PubMed  Google Scholar 

  12. Wu, M., Maier, E., Benz, R. and Hancock, R.E., Biochemistry, 38 (1999) 7235.

    CAS  PubMed  Google Scholar 

  13. Matsuzaki, K., Murase, O., Fujii, N. and Miyajima, K., Biochemistry, 35 (1996) 11361.

    CAS  PubMed  Google Scholar 

  14. Mozsolits, H. and Aguilar, M.I., Biopolymers, 66 (2002) 3.

    Article  CAS  PubMed  Google Scholar 

  15. Rich, R.L. and Myszka, D.G., Curr. Opin. Biotechnol., 11 (2000) 54.

    Article  CAS  PubMed  Google Scholar 

  16. Terrettaz, S., Stora, T., Duschl, C. and Vogel, H., Langmuir, 9 (1993) 1361.

    Article  CAS  Google Scholar 

  17. Plant, A.L., Brigham-Burke, M., Petrella, E.C. and O'shannessy, D.J., Anal. Biochem., 226 (1995) 342.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, M.A., Try, A. C., Carroll, J., Ellar, D.J. and Williams, D.H., Biochim. Biophys. Acta, 1373 (1998) 101.

    CAS  PubMed  Google Scholar 

  19. Cooper, M.A., Hansson, A., Lofas, S. and Williams, D.H., Anal. Biochem., 277 (2000) 196.

    Article  CAS  PubMed  Google Scholar 

  20. Mozsolits, H., Wirth, H.J., Werkmeister, J. and Aguilar, M.I., Biochim. Biophys. Acta, 1512 (2001) 64.

    CAS  PubMed  Google Scholar 

  21. Lee, T.H., Mozsolits, H. and Aguilar, M.I., J. Pept. Res., 58 (2001) 464.

    Article  CAS  PubMed  Google Scholar 

  22. Papo, N. and Shai, Y., Biochemistry, 42 (2003) 458.

    CAS  PubMed  Google Scholar 

  23. Sal-Man, N., Oren, Z. and Shai, Y., Biochemistry, 41 (2002) 11921.

    Article  CAS  PubMed  Google Scholar 

  24. Papo, N. and Shai, Y., Biochemistry, 42 (2003) 9346.

    CAS  PubMed  Google Scholar 

  25. Kustanovich, I., Shalev, D.E., Mikhlin, M., Gaidukov, L. and Mor, A., J. Biol. Chem., 277 (2002) 16941.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W., Smith, D.K., Moulding, K. and Chen, H.M., J. Biol. Chem. 273 (1998) 27438.

  27. Chen, H.M., Clayton, A.H., Wang, W. and Sawyer, W.H., Eur. J. Biochem., 268 (2001) 1659.

    CAS  PubMed  Google Scholar 

  28. Jin, Y., Mozsolits, H., Hammer, J., Zmuda, E., Zhu, F., Zhang, Y., Aguilar, M.I. and Blazyk, J., Biochemistry, 42 (2003) 9395.

    CAS  PubMed  Google Scholar 

  29. Thomas, C.J., Surolia, N. and Surolia, A., J. Biol. Chem., 274 (1999) 29624.

    CAS  PubMed  Google Scholar 

  30. Mangoni, M.L., Papo, N., Mignogna, G., Andreu, D., Shai, Y., Barra, D. and Simmaco, M., Biochemistry, 42 (2003) 14023.

    Article  CAS  PubMed  Google Scholar 

  31. Cooper, M.A., Williams, D.H. and Cho, Y.R., J. Chem. Soc. Chem. Commun., (1997) 1625.

  32. Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H. and Umeda, M., J. Biol. Chem., 273 (1998) 5300.

    Article  CAS  PubMed  Google Scholar 

  33. Chapple, D.S., Mason, D.J., Joannou, C.L., Odell, E.W., Gant, V. and Evans, R.W., Infect. Immun., 66 (1998) 2434.

    CAS  PubMed  Google Scholar 

  34. Matsuzaki, K., Biochim. Biophys. Acta, 1462 (1999) 1.

    CAS  PubMed  Google Scholar 

  35. Ghosh, A.K., Rukmini, R. and Chattopadhyay, A., Biochemistry, 36 (1997) 14291.

    CAS  PubMed  Google Scholar 

  36. Lee, T.-Z., Mozsolits, H. and Aguilar, M.I., J. Pept. Res., 58 (2002) 464.

    Google Scholar 

  37. Bechinger, B., J. Membr. Biol., 156 (1997) 197.

    Article  CAS  PubMed  Google Scholar 

  38. Christensen, K., Bose, H.S., Harris, F.M., Miller, W.L. and Bell, J.D., J. Biol. Chem., 276 (2001) 17044.

    CAS  PubMed  Google Scholar 

  39. Beschiaschvili, G. and Seelig, J., Biochemistry, 29 (1990) 52.

    CAS  PubMed  Google Scholar 

  40. Niemz, A. and Tirrell, D.A., J. Am. Chem. Soc., 123 (2001) 7407.

    Article  CAS  PubMed  Google Scholar 

  41. Blazyk, J., Wiegand, R., Klein, J., Hammer, J., Epand, R.M., Epand, R.F., Maloy, W.L. and Kari, U.P., J. Biol. Chem., 276 (2001) 27899.

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh, J.K., Shaool, D., Guillaud, P., Ciceron, L., Mazier, D., Kustanovich, I., Shai, Y. and Mor, A., J. Biol. Chem., 272 (1997) 31609.

    CAS  PubMed  Google Scholar 

  43. Boman, H.G., Faye, I., Gudmundsson, G.H., Lee, J.Y. and Lidholm, D.A., Eur. J. Biochem., 201 (1991) 23.

    Article  PubMed  Google Scholar 

  44. Cooper, M.A. and Williams, D.H., Chem. Biol., 6 (1999) 891.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, K., Mozsolits, H. & Aguilar, MI. Surface plasmon resonance analysis of antimicrobial peptide–membrane interactions: affinity & mechanism of action. Int J Pept Res Ther 10, 475–485 (2003). https://doi.org/10.1007/s10989-004-2407-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-2407-6

Navigation