Skip to main content

Advertisement

Log in

AngiotensinII mediates cardiomyocyte hypertrophic growth pathways via MMP-dependent HB-EGF liberation

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

Pathological cardiac stimulation by angiotensinII (AngII) can cause left ventricular hypertrophy, a major independent risk factor for heart attack and death. We have previously reported that AngII exerts its hypertrophic effects by usurping the epidermal growth factor (EGF) signalling pathway via metalloprotease-dependent transactivation. However, the EGF-like ligand responsible for AngII-mediated transactivation and cardiac hypertrophy remains to be identified. Using phosphorylated ERK1/2 as a read-out of growth pathway activation and an alkaline phosphatase-tagged Heparin-Binding EGF-like Growth Factor (HB-EGF) reporter construct to examine AngII-mediated liberation, we provide evidence that HB-EGF is the soluble growth factor involved in AngII-induced left ventricular hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gasparo, M., et al., Pharmacol. Rev., 52(3) (2000) 415–472.

    CAS  PubMed  Google Scholar 

  2. Olson, E.N. and Srivastava, D., Science, 272(5262) (1996) 671–676.

    CAS  PubMed  Google Scholar 

  3. Bokemeyer, D., Schmitz, U. and Kramer, H.J., Kidney Int., 58 (2) (2000) 549–558.

    CAS  PubMed  Google Scholar 

  4. Zwick, E., et al., J. Biol. Chem., 272(40) (1997) 24767–24770.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, W.G., et al., Circ. Res., 90(2) (2002) 135–142.

    Article  CAS  PubMed  Google Scholar 

  6. Daub, H., et al., Nature, 379(6565) (1996) 557–560.

    Article  CAS  PubMed  Google Scholar 

  7. Prenzel, N., et al., Endocr. Relat. Cancer, 8(1) (2001) 11–31.

    Article  CAS  PubMed  Google Scholar 

  8. Prenzel, N., et al., Nature, 402(dy6764) (1999) 884–888.

    CAS  PubMed  Google Scholar 

  9. Hannan, R.D., et al., Proc. Natl. Acad. Sci. USA, 93(16) (1996) 8750–8755.

    Article  CAS  PubMed  Google Scholar 

  10. Hannan, R.D., et al., Physiol, 30(8) (2003) 517–527.

    CAS  Google Scholar 

  11. Levitzki, A. and Gazit, A., Science, 267(5205) (1995) 1782–1788.

    CAS  PubMed  Google Scholar 

  12. Suzuki, M., et al., J. Biol. Chem., 272(50) (1997) 31730–31737.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, W.H., et al., Genes. Dev., 16(3) (2002) 307–323.

    Article  CAS  PubMed  Google Scholar 

  14. Izumi, Y., et al., Embo. J., 17(24) (1998) 7260–7272.

    Article  CAS  PubMed  Google Scholar 

  15. Yan, Y., Shirakabe, K. and Werb, Z., J. Cell. Biol., 158(2) (2002) 221–226.

    Article  CAS  PubMed  Google Scholar 

  16. Asakura, M., et al., Nat. Med., 8(1) (2001) 35–40.

    Google Scholar 

  17. Sunnarborg, S.W., et al., J. Biol. Chem., 277(15) (2002) 12838–12845.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, B., et al., Nat. Genet., 24(3) (2000) 296–299.

    CAS  PubMed  Google Scholar 

  19. Crone, S.A., et al., Nat. Med., 8(5) (2002) 459–465.

    Article  CAS  PubMed  Google Scholar 

  20. Iwamoto, R., et al., Proc. Natl. Acad. Sci. USA, 100(6) (2003) 3221–3226.

    Article  CAS  PubMed  Google Scholar 

  21. Baselga, J., Semin. Oncol., 27(5 Suppl 9) (2000) 27–32.

    CAS  PubMed  Google Scholar 

  22. Visse, R. and Nagase, H., Circ. Res., 92(8) (2003) 827–839.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, J., et al., Circ. Res., 73(3) (1993) 439–447.

    CAS  PubMed  Google Scholar 

  24. Nio, Y., et al., J. Clin. Invest., 95(1) (1995) 46–54.

    CAS  PubMed  Google Scholar 

  25. Fujii, N., et al., Biochem. Biophys. Res. Commun., 212(2) (1995) 326–333.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann, S., et al., J. Mol. Med., 79(10) (2001) 601–608.

    Article  CAS  PubMed  Google Scholar 

  27. Paradis, P., et al., Proc. Natl. Acad. Sci. USA, 97(2) (2000) 931–936.

    Article  CAS  PubMed  Google Scholar 

  28. Pfeffer, J.M., et al., Proc. Natl. Acad. Sci. USA, 79(10) (1982) 3310–3314.

    CAS  PubMed  Google Scholar 

  29. Dahlof, B., Am. J. Hypertens., 14(2) (2001) 174–182.

    CAS  PubMed  Google Scholar 

  30. Davis-Fleischer, K.M. and Besner, G.E.,Front. Biosci., 3 (1998) d288–d299.

    CAS  PubMed  Google Scholar 

  31. Mende, U., et al., Proc. Natl. Acad. Sci. USA, 95(23) (1998) 13893–13898.

    Article  CAS  PubMed  Google Scholar 

  32. Adams, J.W., et al., Proc. Natl. Acad. Sci. USA, 95(17) (1998) 10140–10145.

    Article  CAS  PubMed  Google Scholar 

  33. Seta, K., et al., J. Biol. Chem., 277(11) (2002) 9268–9277.

    Article  CAS  PubMed  Google Scholar 

  34. Doan, T.N., Ali, M.S. and Bernstein, K.E., J. Biol. Chem., 276(24) (2001) 20954–20958.

    Article  CAS  PubMed  Google Scholar 

  35. Seta, K. and Sadoshima, J., J. Biol. Chem., 278(11) (2003) 9019–9026.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, Y.Y., et al., J. Biol. Chem., 273(17) (1998) 10261–10269.

    CAS  PubMed  Google Scholar 

  37. Baliga, R.R., et al., Am. J. Physiol., 277(5 Pt 2) (1999) H2026–H2037.

    CAS  PubMed  Google Scholar 

  38. Riese, D.J, 2nd and Stern, D.F., Bioessays, 20(1) (1998) 41–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, N.J., Hannan, R.D., Thomas, W.G. et al. AngiotensinII mediates cardiomyocyte hypertrophic growth pathways via MMP-dependent HB-EGF liberation. Int J Pept Res Ther 10, 431–435 (2003). https://doi.org/10.1007/s10989-004-2398-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-2398-3

Navigation