Skip to main content
Log in

Design of a Coiled-Coil-based Model Peptide System to Explore the Fundamentals of Amyloid Fibril Formation

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Protein deposition as amyloid fibrils underlies more than twenty severely debilitating human disorders. Interestingly, recent studies suggest that all peptides and proteins possess an intrinsic ability to assemble into amyloid fibrils similar to those observed in disease states. The common properties and characteristics of amyloid aggregates thus offer the prospect that simple model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils and understand the origin and progression of fatal disorders associated with amyloid formation. Here, we report the de novo design of a 17-residue peptide model system, referred to as ccβ, which forms a protein-like coiled-coil structure under ambient solution conditions but can be easily converted into amyloid fibrils by raising the temperature. Oxidation of methionine residues at selected hydrophobic positions completely abolished amyloid fibril formation of the peptide while not interfering with its coiled-coil structure. This finding indicates that a small number of site-specific hydrophobic interactions can play a major role in the packing of polypeptide chain segments within amyloid fibrils. The simplicity and characteristics of the ccβ system make it highly suitable for probing molecular details of the assembly of amyloid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

Fmoc:

9-fluorenylmethoxycarbonyl

EDT:

1,2-ethanedithiol

GRAVY:

Grand average hydrophaty

HPLC:

high-performance liquid chromatography

MALDI-TOF:

matrix-assisted laser-desorption ionization time-of-flight mass spectroscopy

MBHA-resin:

4-methylbenzhydrylamine-resin

PAL:

tris(alkoxy)benzylamide linker

PBS:

phosphate buffered saline

PEG:

polyethylene glycol

TEM:

transmission electron microscope

TPTU:

O-(1,2-dihydro-2-oxo-pyridyl)-N, N, N′,N′-tetramethyluronium tetrafluoroborate

TFA:

trifluoroacetic acid

UV:

ultraviolet

References

  • A. Aguzzi C. Haass (2003) Science 302 814

    Google Scholar 

  • F. Albericio N. Kneib-Cordonier S. Biancalana L. Gera R. I. Masada D. Hudson G. Barany (1990) J. Org. Chem 55 3730

    Google Scholar 

  • M. Balbirnie R. Grothe D. S. Eisenberg (2001) Proc. Natl. Acad. Sci. U.S.A 98 2375

    Google Scholar 

  • T. L. Benzinger D. M. Gregory T. S. Burkoth H. Miller-Auer D. G. Lynn R. E. Botto S. C. Meredith (1998) Proc. Natl. Acad. Sci. U.S.A 95 13407

    Google Scholar 

  • D. R. Booth M. Sunde V. Bellotti C. V. Robinson W. L. Hutchinson P. E. Fraser P. N. Hawkins C. M. Dobson S. E. Radford C. C. Blake M. B. Pepys (1997) Nature 385 787 Occurrence Handle10.1038/385787a0

    Article  Google Scholar 

  • M. Bucciantini E. Giannoni F. Chiti F. Baroni L. Formigli J. Zurdo N. Taddei G. Ramponi C. M. Dobson M. Stefani (2002) Nature 416 507 Occurrence Handle10.1038/416507a Occurrence Handle1:CAS:528:DC%2BD38XivVOgtbg%3D Occurrence Handle11932737

    Article  CAS  PubMed  Google Scholar 

  • M. G. Burke R. Woscholski S. N. Yaliraki (2003) Proc. Natl. Acad. Sci. U.S.A 100 13928

    Google Scholar 

  • P. Burkhard M. Meier A. Lustig (2000) Protein Sci 9 2294

    Google Scholar 

  • P. Burkhard J. Stetefeld S. V. Strelkov (2001) Trends Cell Biol 11 82 Occurrence Handle10.1016/S0962-8924(00)01898-5 Occurrence Handle1:CAS:528:DC%2BD3MXpslyktg%3D%3D Occurrence Handle11166216

    Article  CAS  PubMed  Google Scholar 

  • R. Cerpa F. E. Cohen I. D. Kuntz (1996) Fold. Des 1 91

    Google Scholar 

  • A. Chakrabartty R. L. Baldwin (1995) Adv. Protein Chem 46 141

    Google Scholar 

  • T. Chiba Y. Hagihara T. Higurashi K. Hasegawa H. Naiki Y. Goto (2003) J. Biol. Chem 278 47016

    Google Scholar 

  • F. Chiti P. Webster N. Taddei A. Clark M. Stefani G. Ramponi C. M. Dobson (1999) Proc. Natl. Acad. Sci. U.S.A 96 3590

    Google Scholar 

  • F. Chiti N. Taddei M. Bucciantini P. White G. Ramponi C. M. Dobson (2000) EMBO J 19 1441

    Google Scholar 

  • F. Chiti N. Taddei F. Baroni C. Capanni M. Stefani G. Ramponi C. M. Dobson (2002) Nat. Struct. Biol 9 137

    Google Scholar 

  • F. Chiti M. Stefani N. Taddei G. Ramponi C.␣M. Dobson (2003) Nature 424 805

    Google Scholar 

  • B. Ciani E. G. Hutchinson R. B. Sessions D. N. Woolfson (2002) J. Biol. Chem 277 10150

    Google Scholar 

  • C. Cohen D. A. Parry (1990) Proteins 7 1

    Google Scholar 

  • A. S. Cohen T. Shirahama M. Skinner (1982) Electron microscopy of amyloid J. R. Harris (Eds) Electron microscopy of proteins Academic Press London, UK

    Google Scholar 

  • Dado, P. G. and Gellman, S. H.: 1993, J. Am. Chem. Soc. , 12609.

  • W. F. Grado ParticleDe C. M. Summa V. Pavone F. Nastri A. Lombardi (1999) Annu. Rev. Biochem 68 779

    Google Scholar 

  • M. Fandrich M. A. Fletcher C. M. Dobson (2001) Nature 410 165

    Google Scholar 

  • Y. Fezoui D. M. Hartley D. M. Walsh D. J. Selkoe J. J. Osterhout D. B. Teplow (2000) Nat. Struct. Biol 7 1095

    Google Scholar 

  • S. Frank A. Lustig T. Schulthess J. Engel R.A. Kammerer (2000) J. Biol. Chem 275 11672

    Google Scholar 

  • C. García-Echeverría (1996) Bioorg. Med. Chem. Lett 6 229

    Google Scholar 

  • P. Hammarstrom X. Jiang A. R. Hurshman E. T. Powers J. W. Kelly (2002) Proc. Natl. Acad. Sci. U.S.A 99 IssueID4 16427

    Google Scholar 

  • P. B. Harbury T. Zhang P. S. Kim T. Alber (1993) Science 262 1401

    Google Scholar 

  • M. H. Hecht A. Das A. Go L. H. Bradley Y. Wei (2004) Protein Sci 13 1711

    Google Scholar 

  • M. R. Hurle L. R. Helms L. Li W. Chan R. Wetzel (1994) Proc. Natl. Acad. Sci. U.S.A 91 5446

    Google Scholar 

  • K. Janek J. Behlke J. Zipper H. Fabian Y. Georgalis M. Beyermann M. Bienert E. Krause (1999) Biochemistry 38 8246

    Google Scholar 

  • R. A. Kammerer (1997) Matrix Biol 15 555

    Google Scholar 

  • R. A. Kammerer T. Schulthess R. Landwehr A. Lustig J. Engel U. Aebi M. O. Steinmetz (1998) Proc. Natl. Acad. Sci. U.S.A 95 13419

    Google Scholar 

  • R. A. Kammerer V. A. Jaravine S. Frank T. Schulthess R. Landwehr A. Lustig C. Garcia-Echeverria A. T. Alexandrescu J. Engel M. O. Steinmetz (2001) J Biol. Chem 276 13685

    Google Scholar 

  • R. A. Kammerer D. Kostrewa J. Zurdo A. Detken C. Garcia-Echeverria J. D. Green S. A. Muller B. H. Meier F. K. Winkler C. M. Dobson M. O. Steinmetz (2004) Proc. Natl. Acad. Sci. U.S.A 101 4435

    Google Scholar 

  • J. W. Kelly W. E. Balch (2003) J. Cell Biol 161 461

    Google Scholar 

  • W. D. Kohn R. S. Hodges (1998) Trends Biotechnol 16 379

    Google Scholar 

  • J. Kyte R. F. Doolittle (1982) J Mol. Biol 157 105

    Google Scholar 

  • P. T. Lansbury SuffixJr. (1999) Proc. Natl. Acad. Sci. U.S.A 96 3342

    Google Scholar 

  • S. Liemann R. Glockshuber (1999) Biochemistry 38 3258 Occurrence Handle10.1021/bi982714g Occurrence Handle1:CAS:528:DyaK1MXht12hu7w%3D Occurrence Handle10079068

    Article  CAS  PubMed  Google Scholar 

  • P. M. Lopez ParticleDe La K. Goldie J. Zurdo E. Lacroix C.M. Dobson A. Hoenger L. Serrano (2002) Proc. Natl. Acad. Sci. U.S.A 99 16052

    Google Scholar 

  • M. Lu W. Shu H. Ji E. Spek L. Wang N. R. Kallenbach (1999) J Mol. Biol 288 743

    Google Scholar 

  • A. Lupas (1996) Trends Biochem. Sci 21 375

    Google Scholar 

  • S. L. McCutchen Z. Lai G. J. Miroy J. W. Kelly W. Colon (1995) Biochemistry 34 13527

    Google Scholar 

  • D. L. Minor SuffixJr. P. S. Kim (1994) Nature 367 660 Occurrence Handle10.1038/367660a0 Occurrence Handle1:CAS:528:DyaK2cXitFWjtLo%3D Occurrence Handle8107853

    Article  CAS  PubMed  Google Scholar 

  • A. D. Miranker (2004) Proc. Natl. Acad. Sci. U.S.A 101 4335

    Google Scholar 

  • L. Nielsen S. Frokjaer J. Brange V. N. Uversky A.L. Fink (2001) Biochemistry 40 8397

    Google Scholar 

  • D. E. Otzen O. Kristensen M. Oliveberg (2000) Proc. Natl. Acad. Sci. U.S.A 97 9907

    Google Scholar 

  • M. F. Perutz (1999) Trends Biochem. Sci 24 58

    Google Scholar 

  • M. F. Perutz T. Johnson M. Suzuki J. T. Finch (1994) Proc. Natl. Acad. Sci. U.S.A 91 5355

    Google Scholar 

  • S. B. Prusiner (2001) N. Engl. J. Med 344 1516

    Google Scholar 

  • M. Ramirez-Alvarado J. S. Merkel L. Regan (2000) Proc. Natl. Acad. Sci. U.S.A 97 8979

    Google Scholar 

  • J. S. Richardson D. C. Richardson (1998) Science 240 1648

    Google Scholar 

  • J. C. Rochet P. T. Lansbury SuffixJr (2000) Curr. Opin. Struct. Biol 10 60

    Google Scholar 

  • J. C. Sacchettini J. W. Kelly (2002) Nat. Rev. Drug Discov 1 267

    Google Scholar 

  • L. C. Serpell M. Sunde C. C. Blake (1997) Cell Mol. Life Sci 53 871

    Google Scholar 

  • D. P. Smith S. Jones L. C. Serpell M. Sunde S. E. Radford (2003) J. Mol. Biol 330 943

    Google Scholar 

  • M. Stefani C. M. Dobson (2003) J. Mol. Med 81 678

    Google Scholar 

  • M. O. Steinmetz A. Stock T. Schulthess R. Landwehr A. Lustig J. Faix G. Gerisch U. Aebi R. A. Kammerer (1998) EMBO J 17 1883

    Google Scholar 

  • J. Y. Su R. S. Hodges C. M. Kay (1994) Biochemistry 33 15501

    Google Scholar 

  • M. Sunde L. C. Serpell M. Bartlam P. E. Fraser M. B. Pepys C. C. Blake (1997) J. Mol. Biol 273 729

    Google Scholar 

  • Y. Takahashi A. Ueno H. Mihara (2000) Structure. Fold. Des 8 915

    Google Scholar 

  • J. P. Taylor J. Hardy K. H. Fischbeck (2002) Science 296 1991

    Google Scholar 

  • K. Tenidis M. Waldner J. Bernhagen W. Fischle M. Bergmann M. Weber M. L. Merkle W. Voelter H. Brunner A. Kapurniotu (2000) J. Mol. Biol 295 1055

    Google Scholar 

  • L. O. Tjernberg D. J. Callaway A. Tjernberg S. Hahne C. Lilliehook L. Terenius J. Thyberg C. Nordstedt (1999) J. Biol. Chem 274 12619

    Google Scholar 

  • L. Tjernberg W. Hosia N. Bark J. Thyberg J. Johansson (2002a) J. Biol. Chem 277 43243

    Google Scholar 

  • L. O. Tjernberg A. Tjernberg N. Bark Y. Shi B. P. Ruzsicska Z. Bu J. Thyberg D. J. Callaway (2002b) Biochem. J 366 343

    Google Scholar 

  • V. Villegas J. Zurdo V. V. Filimonov F. X. Aviles C. M. Dobson L. Serrano (2000) Protein Sci 9 1700

    Google Scholar 

  • D. M. Walsh D. M. Hartley Y. Kusumoto Y. Fezoui M. M. Condron A. Lomakin G. B. Benedek D. J. Selkoe D. B. Teplow (1999) J. Biol. Chem 274 25945

    Google Scholar 

  • M. W. West W. Wang J. Patterson J. D. Mancias J. R. Beasley M. H. Hecht (1999) Proc. Natl. Acad. Sci. U.S.A 96 11211

    Google Scholar 

  • S. Zhang (2003) Nat. Biotechnol 21 1171

    Google Scholar 

  • S. Zhang A. Rich (1997) Proc. Natl. Acad. Sci. U.S.A 94 23

    Google Scholar 

  • L. Zhu X. J. Zhang L. Y. Wang J. M. Zhou S. Perrett (2003) J. Mol. Biol 328 235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Kammerer.

Additional information

Abbreviations used for amino acids follow the recommendations of the IUPAC-IUB Commission of Biochemical Nomenclature [Eur. J. Biochem., 138 (1984) 9].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, M.O., García-Echeverría, C. & Kammerer, R.A. Design of a Coiled-Coil-based Model Peptide System to Explore the Fundamentals of Amyloid Fibril Formation. Int J Pept Res Ther 11, 43–52 (2005). https://doi.org/10.1007/s10989-004-1720-4

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-1720-4

Key words

Navigation