Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action

Abstract

Pyrrhocoricin and drosocin, representatives of the short, proline-rich antimicrobial peptide family kill bacteria by inactivating the bacterial heat shock protein DnaK and inhibiting chaperone-assisted protein folding. The molecular architecture of these peptides features an N-terminal DnaK-binding half and a C-terminal delivery unit, capable of crossing bacterial membranes. Cell penetration is enhanced if multiple copies of pyrrhocoricin are conjugated. To obtain drug leads with improved antimicrobial properties, and possible utility as therapeutic agents, we synthesized chimeric dimers, in which pyrrhocoricin’s potent DnaK-binding domain was connected to drosocin’s superior cell penetrating module. Indeed, the new constructs not only exhibited enhanced in vitro antibacterial properties against the originally sensitive strains Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium, but also showed activity against Staphylococcus aureus, a bacterial strain resistant to native pyrrhocoricin and drosocin. The improved antimicrobial profile could be demonstrated with assays designed to distinguish intracellular or membrane activities. While a novel mixed pyrrhocoricin–drosocin dimer and the purely pyrrhocoricin-based old dimer bound E. coli DnaK with an identical 4 μM K d, the mixed dimers penetrated a significantly larger number of E. coli and S. aureus cells than the previous analogs and destroyed a larger percentage of bacterial membrane structures. Toxicity to human red blood cells could not be observed up to the highest peptide concentration tested, 640 μM. In addition, repetitive reculturing of E. coli or S. aureus cells with sublethal concentrations of the mixed dimer did not result in resistance induction to the novel peptide antibiotic. The new concept of pyrrhocoricin–drosocin mixed dimers yields antibacterial peptide derivatives acting with a multiple mode of action, and can serve as a useful addition to the current antimicrobial therapy repertoire.

Abbreviations

Chex:

1-amino-1-cyclohexane carboxylic acid

Dab:

2,4-diamino-butyric acid

DIC:

differential interference contrast

Hsp:

heat shock protein

LPS:

lipopolysaccharide

MALDI:

matrix-assisted laser desorption/ionization

MHB:

Muller–Hinton broth

MIC:

minimal inhibitory concentration

PBS:

phosphate buffered saline

Pip:

4-amino-piperidine-4-carboxylic acid

RP-HPLC:

reversed-phase high performance liquid chromatography

TNF:

tumor necrosis factor

References

  1. D. Andreu L. Rivas (1998) Biopolymers 47 415–433

    Google Scholar 

  2. A.-M. Bencivengo M. Cudic R. Hoffmann L. Otvos SuffixJr. (2001) Lett. Pept. Sci 8 201–209

    Google Scholar 

  3. H. G. Boman (1995) Annu. Rev. Immunol 13 61–92

    Google Scholar 

  4. D. M. Bowdish D. J. Davidson D. P. Speert R. E. Hancock (2004) J. Immunol 172 3758–3765

    Google Scholar 

  5. M.A. Bower M. Cudic W. Campbell J.D. Wade L. Otvos SuffixJr. (2003) Lett. Pept. Sci 10 466–473

    Google Scholar 

  6. P. Bulet J.-L. Dimarcq C. Hetru M. Lagueux M. Charlet G. Hegy A. Dorsselaer Particlevan J. A. Hoffmann (1993) J.Biol. Chem 268 14893–14897

    Google Scholar 

  7. P. Bulet L. Urge S. Ohresser C. Hetru L. Otvos SuffixJr. (1996) Eur. J. Biochem 238 64–69

    Google Scholar 

  8. P. Casteels P. Tempst (1994) Biochem. Biophys. Res. Commun 199 339–345

    Google Scholar 

  9. P. Casteels C. Ampe F. Jacobs M. Vaeck P. Tempst (1989) EMBO J 8 2387–2391

    Google Scholar 

  10. P. Casteels J. Romagnolo M. Castle K. Casteels-Josson H. Erdjument-Bromage P. Tempst (1994) J. Biol. Chem 269 26107–26115

    Google Scholar 

  11. M. Castle A. Nazarian S.-S. Yi P. Tempst (1999) J. Biol. Chem 274 32555–32564

    Google Scholar 

  12. L. S. Chesnokova S. V. Slepenkov S. N. Witt (2004) FEBS Lett 565 65–69 Occurrence Handle10.1016/j.febslet.2004.03.075

    Article  Google Scholar 

  13. S. Cociancich A. Ghazi C. Hetru J. A. Hoffmann L. Letellier (1993) J. Biol. Chem 268 19239–19245

    Google Scholar 

  14. S. Cociancich A. Dupont G. Hegy R. Lanot F. Holder C. Hetru J. A. Hoffmann P. Bulet (1994) Biochem. J 300 567–575

    Google Scholar 

  15. M. Cudic L. Otvos SuffixJr. (2002) Curr. Drug Targets 3 101–106

    Google Scholar 

  16. M. Cudic P. Bulet R. Hoffmann D. J. Craik L. Otvos SuffixJr. (1999) Eur. J. Biochem 266 549–558

    Google Scholar 

  17. M. Cudic B. A. Condie D. J. Weiner E. S. Lysenko Z. Q. O. I. Xiang P. Bulet L. Otvos SuffixJr. (2002) Peptides 23 2071–2083

    Google Scholar 

  18. M. Cudic C. V. Lockatell D. E. Johnson L. Otvos SuffixJr. (2003) Peptides 24 807–820

    Google Scholar 

  19. D. A. Devine R. E. Hancock (2002) Curr. Pharm. Des 8 703–714

    Google Scholar 

  20. A. DiNardo A. Vitiello R. L. Gallo (2003) J. Immunol 170 2274–2278

    Google Scholar 

  21. G. B. Fields R. L. Noble (1990) Int. J. Pept. Protein Res 35 161–214

    Google Scholar 

  22. B. B. Finlay R. E. W. Hancock (2004) Nat. Rev. Microbiol 2 497–504

    Google Scholar 

  23. C. L. Friedrich D. Moyles T. J. Beveridge R. E. Hancock (2000) Antimicrob. Agents Chemother 44 2086–2092

    Google Scholar 

  24. R. L. Gallo K. M. Huttner (1998) J. Invest. Dermatol 111 739–743

    Google Scholar 

  25. R. Gennaro M. Zanetti M. Benincasa E. Podda M. Miani (2002) Curr. Pharm. Des 8 763–778

    Google Scholar 

  26. R.E.W. Hancock M.G. Scott (2000) Proc. Natl. Acad. Sci. USA 97 8856–8861

    Google Scholar 

  27. R. Hoffmann P. Bulet L. Urge L. Otvos SuffixJr. (1999) Biochim. Biophys. Acta 1426 459–467

    Google Scholar 

  28. G. Kragol S. Lovas G. Varadi B. A. Condie R. Hoffmann L. Otvos SuffixJr. (2001) Biochemistry 40 3016–3026

    Google Scholar 

  29. G. Kragol R. Hoffmann M. A. Chattergoon S. Lovas M. Cudic P. Bulet B. A. Condie K. J. Rosengren L. J. Montaner L. Otvos SuffixJr. (2002) Eur. J. Biochem 269 4226–4237

    Google Scholar 

  30. S. Ludtke K. He H. Huang (1995) Biochemistry 34 16764–16769

    Google Scholar 

  31. J. A. Mackintosh D. A. Veal A. J. Beattie A. A. Gooley (1998) J. Biol. Chem 273 6139–6143

    Google Scholar 

  32. A. McManus L. Otvos SuffixJr. R. Hoffmann D. J. Craik (1999) Biochemistry 38 705–714

    Google Scholar 

  33. M. Meister B. Lemaitre J. A. Hoffmann (1997) BioEssays 19 1019–1026

    Google Scholar 

  34. L. Otvos SuffixJr. (2000) J. Pept. Sci 6 497–511

    Google Scholar 

  35. L. Otvos SuffixJr. K. Bokonyi I. Varga B. I. Otvos R. Hoffmann H. C. J. Ertl J. D. Wade A. M. McManus D. J. Craik P. Bulet (2000a) Protein Sci 9 742–749

    Google Scholar 

  36. L. O. I. Otvos SuffixJr. M. E. Rogers P. J. Consolvo B. A. Condie S. Lovas P. O. I. Bulet M. Blaszczyk-Thurin (2000b) Biochemistry 39 14150–14159

    Google Scholar 

  37. L. Otvos SuffixJr. M. Cudic B. Y. Chua G. Deliyannis D. C. Jackson (2004) Mol. Pharmaceut 1 220–232

    Google Scholar 

  38. M. G. Scott D. J. Davidson M. R. Gold D. Bowdish R. E. W. Hancock (2002) J. Immunol 169 3883–3891

    Google Scholar 

  39. P. Srivastava (2002) Annu. Rev. Immunol 20 395–425

    Google Scholar 

  40. H. Steiner D. Andreu R. B. Merrifield (1988) Biochim. Biophys. Acta 939 260–266

    Google Scholar 

  41. L. Urge L. Otvos SuffixJr. (1995) Lett. Pept. Sci 1 207–212

    Google Scholar 

  42. S. Uttenweiler-Joseph M. Moniatte M. Lagueux A. Van Dorsselaer J. A. Hoffmann P. Bulet (1998) Proc. Natl. Acad. Sci. USA 95 11342–11347

    Google Scholar 

  43. T. Wieprecht O. Apostolov M. Beyermann J. Seelig (2000) Biochemistry 39 442–452

    Google Scholar 

  44. W. C. Wimley M. E. Selsted S. H. White (1994) Protein Sci 3 1361–1373

    Google Scholar 

  45. M. Wu E. Maier R. Benz R. E. W. Hancock (1999) Biochemistry 38 7235–7242

    Google Scholar 

  46. D. Yang Q. Chen A. P. Schmidt G. M. Anderson J. M. Wang J. Wooters J. J. Oppenheim O. Chertov (2000) J. Exp. Med 192 1069–1074

    Google Scholar 

  47. M. Zasloff (2002) Nature 415 389–395 Occurrence Handle10.1038/415389a Occurrence Handle1:CAS:528:DC%2BD38XhtVCgsLs%3D Occurrence Handle11807545

    Article  CAS  PubMed  Google Scholar 

  48. L. Zhang R. Benz R. E. W. Hancock (1999) Biochemistry 38 8102–8111

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laszlo Otvos Jr..

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Otvos, L., Snyder, C., Condie, B. et al. Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action. Int J Pept Res Ther 11, 29–42 (2005). https://doi.org/10.1007/s10989-004-1719-x

Download citation

Key words

  • Cell penetration
  • DnaK binding
  • drosocin
  • growth inhibition
  • membrane disintegration
  • pyrrhocoricin
  • resistant bacteria
  • stability
  • toxicity