Linguistics and Philosophy

, Volume 41, Issue 4, pp 423–455 | Cite as

Semantics of the Barwise sentence: insights from expressiveness, complexity and inference

  • Dariusz KalocińskiEmail author
  • Michał Tomasz Godziszewski
Open Access


In this paper, we study natural language constructions which were first examined by Barwise: The richer the country, the more powerful some of its officials. Guided by Barwise’s observations, we suggest that conceivable interpretations of such constructions express the existence of various similarities between partial orders such as homomorphism or embedding (strong readings). Semantically, we interpret the constructions as polyadic generalized quantifiers restricted to finite models (similarity quantifiers). We extend the results obtained by Barwise by showing that similarity quantifiers are not expressible in elementary logic over finite models. We also investigate whether the proposed readings are sound from the cognitive perspective. We prove that almost all similarity quantifiers are intractable. This leads us to first-order variants (weak readings), which only approximate the strong readings, but are cognitively more plausible. Driven by the question of ambiguity, we recall Barwise’s argumentation in favour of strong readings, enriching it with some arguments of our own. Given that Barwise-like sentences are indeed ambiguous, we use a generalized Strong Meaning Hypothesis to derive predictions for their verification. Finally, we propose a hypothesis according to which conflicting pressures of communication and cognition might give rise to an ambiguous construction, provided that different semantic variants of the construction withstand different pressures involved in its usage.


Homomorphism Embedding Computational complexity Partial order Polyadic quantification Expressiveness Strong Meaning Hypothesis Ambiguity Tractable cognition 


  1. Arora, S., & Barak, B. (2009). Computational complexity: A modern approach (1st ed.). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  2. Barwise, J. (1979). On branching quantifiers in English. Journal of Philosophical Logic, 8(1), 47–80.CrossRefGoogle Scholar
  3. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2), 159–219.CrossRefGoogle Scholar
  4. Christiansen, M. H., & Chater, N. (2016). Creating language: Integrating evolution, acquisition, and processing. Cambridge: MIT Press.CrossRefGoogle Scholar
  5. Culicover, P. W., & Jackendoff, R. (1999). The view from the periphery: The English comparative correlative. Linguistic Inquiry, 30(4), 543–571.CrossRefGoogle Scholar
  6. Dalrymple, M., Kanazawa, M., Kim, Y., McHombo, S., & Peters, S. (1998). Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy, 21(2), 159–210.CrossRefGoogle Scholar
  7. de Haan, R., & Szymanik, J. (2015). A dichotomy result for ramsey quantifiers. In V. de Paiva, R. de Queiroz, L. S. Moss, D. Leivant, & A. G. de Oliveira (Eds.), Logic, language, information, and computation: 22nd International workshop, WoLLIC 2015, Bloomington, IN, USA, July 20–23, 2015, Proceedings (pp. 69–80). Berlin: Springer. Scholar
  8. de Haan, R., & Szymanik, J. (to appear). Characterizing polynomial Ramsey quantifiers. Mathematical Structures in Computer Science. arxiv:1601.02258
  9. Dummett, M. A. E. (1975). What is a theory of meaning? In S. Guttenplan (Ed.), Mind and language. Oxford: Oxford University Press.Google Scholar
  10. Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of mathematics, 17(3), 449–467.CrossRefGoogle Scholar
  11. Fagin, R. (1974). Generalized first-order spectra and polynomial-time recognizable sets. In Karp, R. (Ed.), Complexity of computation, volume 7 of SIAM-AMS Proceedings (pp. 43–73).Google Scholar
  12. Frixione, M. (2001). Tractable competence. Minds and Machines, 11(3), 379–397.CrossRefGoogle Scholar
  13. Gierasimczuk, N., & Szymanik, J. (2009). Branching quantification v. two-way quantification. Journal of Semantics, 26(4), 367–392.CrossRefGoogle Scholar
  14. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax and semantics (Vol. 3). New York: Academic Press.Google Scholar
  15. Hansen, N., & Chemla, E. (2017). Color adjectives, standards, and thresholds: An experimental investigation. Linguistics and Philosophy, 40(3), 239–278.CrossRefGoogle Scholar
  16. Hella, L., Väänänen, J., & Westerståhl, D. (1997). Definability of polyadic lifts of generalized quantifiers. Journal of Logic, Language and Information, 6(3), 305–335.CrossRefGoogle Scholar
  17. Immerman, N. (1999). Descriptive complexity. Berlin: Springer.CrossRefGoogle Scholar
  18. Kalociński, D. (2016). Learning the semantics of natural language quantifiers. Ph.D. Thesis, University of Warsaw, Warsaw.Google Scholar
  19. Keenan, E. L. (1992). Beyond the Frege boundary. Linguistics and Philosophy, 15(2), 199–221.CrossRefGoogle Scholar
  20. Keenan, E. L. (1996). Further beyond the Frege boundary. In J. van der Does & J. van Eijck (Eds.), Quantifiers, logic, and language (pp. 179–201). Stanford, CA: CSLI Publications.Google Scholar
  21. Keenan, E. L., & Westerståhl, D. (1997). Generalized quantifiers in linguistics and logic. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 837–895). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  22. Keenan, E. L., & Ralalaoherivony, B. (2014). Correlational comparatives (CCs) in Malagasy. In The 21st annual meeting of austronesian formal linguistics association (AFLA 21), University of Hawai’i at Mānoa.Google Scholar
  23. Kennedy, C., & McNally, L. (2005). Scale structure, degree modification, and the semantics of gradable predicates. Language, 81(2), 345–381.CrossRefGoogle Scholar
  24. Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communication in the cultural evolution of linguistic structure. Cognition, 141, 87–102.CrossRefGoogle Scholar
  25. Libkin, L. (2004). Elements of finite model theory. Berlin: Springer.CrossRefGoogle Scholar
  26. Lidz, J., Pietroski, P., Halberda, J., & Hunter, T. (2011). Interface transparency and the psychosemantics of most. Natural Language Semantics, 19(3), 227–256.CrossRefGoogle Scholar
  27. McCawley, J. D. (1988). The comparative conditional constructions in English, German and Chinese. In Proceedings of the 14th annual meeting of the Berkeley Linguistics Society (pp. 176–187).Google Scholar
  28. Mostowski, M. (1994). Kwantyfikatory rozgałȩzione a problem formy logicznej. In M. Omyła (Ed.), Nauka i jȩzyk (pp. 201–242). Biblioteka Myśli Semiotycznej.Google Scholar
  29. Mostowski, M., & Szymanik, J. (2012). Semantic bounds for everyday language. Semiotica, 188(1/4), 363–372.Google Scholar
  30. Mostowski, M., & Wojtyniak, D. (2004). Computational complexity of the semantics of some natural language constructions. Annals of Pure and Applied Logic, 127(1–3), 219–227.CrossRefGoogle Scholar
  31. Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Oxford: Oxford University Press.Google Scholar
  32. Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The meaning of most: Semantics, numerosity and psychology. Mind & Language, 24(5), 554–585.CrossRefGoogle Scholar
  33. Ristad, E. (1993). The language complexity game. Cambridge: The MIT Press.Google Scholar
  34. Sabato, S., & Winter, Y. (2005). From semantic restrictions to reciprocal meanings. In Proceedings of FG-MoL 2005 (pp. 13–26). CSLI Publications.Google Scholar
  35. Schlotterbeck, F., & Bott, O. (2013). Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational antecedents. Journal of Logic, Language and Information, 22(4), 363–390.CrossRefGoogle Scholar
  36. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Reading: Addison-Wesley.Google Scholar
  37. Sevenster, M. (2006). Branches of imperfect information: Logic, games, and computation. Ph.D. thesis, University of Amsterdam.Google Scholar
  38. Stanosz, B. (1974). Status poznawczy semantyki [The cognitive status of semantics]. Studia Semiotyczne, 5, 101–115. Translation:
  39. Suppes, P. (1980). Procedural semantics. In R. Haller & W. Grassl (Eds.), Language, logic, and philosophy: Proceedings of the 4th international Wittgenstein symposium (pp. 27–35). Vienna: Hölder-Pichler-Tempsy.Google Scholar
  40. Suppes, P. (1982). Variable-free semantics with remark on procedural extensions. In S. Simon (Ed.), Language, mind and brain (pp. 21–34). Hillsdale: Erlbaum.Google Scholar
  41. Szymanik, J. (2010). Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguistics and Philosophy, 33(3), 215–250.CrossRefGoogle Scholar
  42. Szymanik, J. (2016). Quantifiers and cognition: Logical and computational perspectives. Number 96 in Studies in linguistics and philosophy (1st ed.). New York: Springer.Google Scholar
  43. Szymanik, J., & Zajenkowski, M. (2010). Comprehension of simple quantifiers. Empirical evaluation of a computational model. Cognitive Science: A Multidisciplinary Journal, 34(3), 521–532.CrossRefGoogle Scholar
  44. Tichy, P. (1969). Intension in terms of Turing machines. Studia Logica, 24(1), 7–21.CrossRefGoogle Scholar
  45. Tomaszewicz, B. (2013). Linguistic and visual cognition: Verifying proportional and superlative most in Bulgarian and Polish. Journal of Logic, Language and Information, 22(3), 335–356.CrossRefGoogle Scholar
  46. van Benthem, J. (1986). Essays in logical semantics. Dordrecht: Reidel.CrossRefGoogle Scholar
  47. van Benthem, J. (1987). Towards a computational semantics. In Gärdenfors P. (Eds.), Generalized quantifiers. Studies in linguistics and philosophy (formerly Synthese Language Library) (Vol. 31). Dordrecht: Springer.Google Scholar
  48. van Benthem, J. (1989). Polyadic quantifiers. Linguistics and Philosophy, 12(4), 437–464.CrossRefGoogle Scholar
  49. van Lambalgen, M., & Hamm, F. (2005). The proper treatment of events. London: Wiley.CrossRefGoogle Scholar
  50. van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939–984.CrossRefGoogle Scholar
  51. Westerståhl, D. (1984). Some results on quantifiers. Notre Dame Journal of Formal Logic, 25(2), 152–170.CrossRefGoogle Scholar
  52. Winter, Y. (2001). Plural predication and the strongest meaning hypothesis. Journal of Semantics, 18(4), 333–365.CrossRefGoogle Scholar
  53. Zajenkowski, M., Styła, R., & Szymanik, J. (2011). A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. Journal of Communication Disorders, 44(6), 595–600.CrossRefGoogle Scholar
  54. Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cambridge, MA: Addison-Wesley Press.Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of WarsawWarsawPoland

Personalised recommendations