Numbers and Cardinalities: What’s Really Wrong with the Easy Argument for Numbers?

Abstract

This paper investigates a certain puzzling argument concerning number expressions and their meanings, the Easy Argument for Numbers. After finding faults with previous views, I offer a new take on what’s ultimately wrong with the Argument: it equivocates. I develop a semantics for number expressions which relates various of their uses, including those relevant to the Easy Argument, via type-shifting. By marrying Romero ’s (Linguist Philos 28(6):687–737, 2005) analysis of specificational clauses with Scontras ’ (The semantics of measurement, 2014) semantics for Degree Nouns, I show how to extend Landman ’s (Indefinites and the type of sets, Blackwell, Oxford, 2004) Adjectival Theory to numerical specificational clauses. The resulting semantics can explain various contrasts observed by Moltmann (Philos Stud 162:499–536, 2013a), but only if Scontras’ contention that degrees and numbers are sortally distinct is correct. At the same time, the Easy Argument can establish its intended conclusion only if numbers and degrees are mistakenly assumed to be identical.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, C., & Morzycki, M. (2013). Degrees as kinds. Natural Language and Linguistic Theory, 33, 791–828.

    Article  Google Scholar 

  2. Bach, E. (1986). Natural language metaphysics. In R. B. Marcus, et al. (Eds.), Logic, methodology, and the philosophy of science VII (pp. 573–595)

  3. Balcerak Jackson, B. (2013). Defusing easy arguments for numbers. Linguistics and Philosophy, 36, 447–461.

    Article  Google Scholar 

  4. Barker, C. (1998). Partitives, double genitives, and anti-uniqueness. Natural Language and Linguistic Theory, 4, 679–717.

    Article  Google Scholar 

  5. Carlson, G. (1977). Amount relatives. Language, 53, 520–542.

    Article  Google Scholar 

  6. Chierchia, G. (1984). Topics in the syntax and semantics of infinitives and gerunds. PhD thesis, University of Massachusetts at Amherst.

  7. Chierchia, G. (1998). Reference to kinds across languages. Natural Language Semantics, 6, 339–405.

    Article  Google Scholar 

  8. Comorovsky, I. (2008). Constituent questions and the copula of specification. In I. Comorovsky & K. von Heusinger (Eds.), Existence: Semantics and syntax (pp. 49–77). Berlin: Springer.

    Google Scholar 

  9. Dummett, M. (1991). Frege: Philosophy of mathematics. London: Duckworth.

    Google Scholar 

  10. Felka, K. (2014). Number words and reference to numbers. Philosophical Studies, 168, 261–268.

    Article  Google Scholar 

  11. Frana, I. (2006). The de re analysis of concealed questions: A unified approach to definite and indefinite concealed questions. In M. Gibson & J. Howell (Eds.), Proceedings of SALT 16 (pp. 17–34).

  12. Frege, G. (1884). Die Grundlagen der Arithmetik (J. L. Austin as The Foundations of Arithmetic. Blackwell, Oxford 1950 Trans.). Breslau: Koebner.

  13. Geurts, B. (2006). Take ‘five’. In S. Vogleer & L. Tasmowski (Eds.), Non-definiteness and plurality (pp. 311–329). Amsterdam: Benjamins.

    Google Scholar 

  14. Greenberg, B. (1977). A semantic account of relative clauses with embedded question interpretations. Los Angeles: University of California.

    Google Scholar 

  15. Hale, B. (2016). Definitions of numbers and their applications. In P. Ebert & M. Rossberg (Eds.), Abstractionism (pp. 326–341). Oxford: Oxford University Press.

    Google Scholar 

  16. Hale, B., & Wright, C. (2001). The reason’s proper study: Towards a neo-Fregean philosophy of mathematics. Oxford: Oxford University Press.

    Google Scholar 

  17. Heim, I. (1979). Concealed questions. In R. Bauerle, U. Egli, & A. von Stechow (Eds.), Semantics from different points of view (pp. 51–60). Berlin: Springer.

    Google Scholar 

  18. Heim, I. (1987). Where does the definiteness restriction apply? Evidence from the definiteness of variables. In E. Reuland & A. ter Meulen (Eds.), The representation of (in)definiteness (pp. 21–42). Cambridge: MIT Press.

    Google Scholar 

  19. Higgins, R. (1973). The pseudo-cleft construction in english. New York, NY: Garland.

    Google Scholar 

  20. Hodes, H. (1984). Logicism and the ontological commitments of arithmetic. The Journal of Philosophy, 81, 123–149.

    Article  Google Scholar 

  21. Hofweber, T. (2005). Number determiners, numbers, and arithmetic. The Philosophical Review, 114, 179–225.

    Article  Google Scholar 

  22. Hofweber, T. (2007). Innocent statements and their metaphysically loaded counterparts. Philosopher’s Imprint, 7, 1–33.

    Google Scholar 

  23. Karttunen, L. (1977). Syntax and semantics of questions. Linguistics and Philosophy, 1, 3–44.

    Article  Google Scholar 

  24. Kennedy, C. (2012). Adjectives. In G. Russell, & D. Graff Fara (Eds.), Routledge companion to philosophy of language. Routledge.

  25. Kennedy, C. (2013). A scalar semantics for scalar readings of number words. In I. Caponigro & C. Cecchetto (Eds.), From grammar to meaning: The spontaneous logicality of language (pp. 172–200). Cambridge: Cambridge University Press.

    Google Scholar 

  26. Krifka, M. (1989). Nominal reference, temporal constitution, and quantification in event semantics. In J. van Bentham, R. Bartsch, & P. van Emde Boas (Eds.), Semantics and contextual expressions (pp. 75–115). Dordrecht: Foris.

    Google Scholar 

  27. Landman, F. (2004). Indefinites and the type of sets. Oxford: Blackwell.

    Google Scholar 

  28. Lassiter, D. (2011). Measurement and modality: The scalar basis of modal semantics. PhD thesis, New York University.

  29. Link, G. (1983). The logical analysis of plurals and mass terms: A lattice-theoretic approach. In R. Bäuerle, C. Schwarze, & A. von Stechow (Eds.), Meaning, use, and interpretation of language (pp. 303–323). Berlin: Springer.

    Google Scholar 

  30. Mikkelsen, L. (2005). Copular clauses: Specification, predication, and equation. Amsterdam: Benjamins.

    Google Scholar 

  31. Mikkelsen, L. (2011). Copular clauses. In K. von Heusinger, C. Maienborn, & P. Portner (Eds.), Semantics: An international handbook of natural language meaning. Berlin: de Gruyter.

    Google Scholar 

  32. Moltmann, F. (2013a). Reference to numbers in natural language. Philosophical Studies, 162, 499–536.

    Article  Google Scholar 

  33. Moltmann, F. (2013b). The semantics of existence. Linguistics and Philosophy, 36, 31–63.

    Article  Google Scholar 

  34. Partee, B. (1986a). Ambiguous pseudoclefts with unambiguous Be. In S. Bergman, J. Choe, & J. McDonough (Eds.), Proceedings of the Northwestern linguistics society 16. GLSA. (Reprinted in Compositionality in formal semantics, pp. 190–202, by Partee, 2004, Blackwell).

  35. Partee, B. (1986b). Noun phrase interpretation and type-shifting principles. In J. Groenendijk, D. de Jongh, & M. Stokhof (Eds.), Studies in discourse representation theory and the theory of generalized quantifiers (pp. 115–144). Dordrecht: Foris.

  36. Romero, M. (2005). Concealed questions and specificational subjects. Linguistics and Philosophy, 28(6), 687–737.

    Article  Google Scholar 

  37. Safir, F. (1982). Syntactic chains and the definiteness effect. PhD thesis, Massachussetts Institute of Technology.

  38. Schwarzschild, R. (2005). Measure phrases as modifiers of adjectives. Recherches Linguistiques de Vincennes, 34, 207–228.

    Article  Google Scholar 

  39. Scontras, G. (2014). The semantics of measurement. PhD thesis, Harvard University.

  40. Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford: Oxford University Press.

    Google Scholar 

  41. Sharvy, R. (1980). A more general theory of definite descriptions. The Philosophical Review, 89, 607–624.

    Article  Google Scholar 

  42. Tennant, N. (1997). On the necessary existence of numbers. Nous, 31, 307–336.

    Article  Google Scholar 

  43. Wright, C. (2000). Neo-Fregean foundations for real analysis: Some reflections on Frege’s constraint. Notre Dame Journal of Formal Logic, 41, 317–334.

    Article  Google Scholar 

  44. Yablo, S. (2005). The myth of the seven. In M. Kalderon (Ed.), Fictionalist approaches to metaphysics (pp. 90–115). Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Snyder.

Additional information

This paper grew out of material presented at a workshop on the semantics of cardinality expressions at Ohio State. I would like to sincerely thank the workshop audience, the insightful reviewers at L&P, and the following individuals for helpful discussions related to the material presented here: Chris Barker, Jefferson Barlew, Thomas Hofweber, Chris Kennedy, Carl Pollard, Craige Roberts, Greg Scontras, Stewart Shapiro, and Joost Zwarts. Any shortcomings are completely my own. This paper was supported by the National Science Foundation under Grant No. 0952571.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snyder, E. Numbers and Cardinalities: What’s Really Wrong with the Easy Argument for Numbers?. Linguist and Philos 40, 373–400 (2017). https://doi.org/10.1007/s10988-017-9215-x

Download citation

Keywords

  • Number expressions
  • Degrees
  • Specificational clauses
  • Measurement
  • Type-shifting
  • Degree nouns