Advertisement

Linguistics and Philosophy

, Volume 40, Issue 4, pp 373–400 | Cite as

Numbers and Cardinalities: What’s Really Wrong with the Easy Argument for Numbers?

  • Eric SnyderEmail author
Article

Abstract

This paper investigates a certain puzzling argument concerning number expressions and their meanings, the Easy Argument for Numbers. After finding faults with previous views, I offer a new take on what’s ultimately wrong with the Argument: it equivocates. I develop a semantics for number expressions which relates various of their uses, including those relevant to the Easy Argument, via type-shifting. By marrying Romero ’s (Linguist Philos 28(6):687–737, 2005) analysis of specificational clauses with Scontras ’ (The semantics of measurement, 2014) semantics for Degree Nouns, I show how to extend Landman ’s (Indefinites and the type of sets, Blackwell, Oxford, 2004) Adjectival Theory to numerical specificational clauses. The resulting semantics can explain various contrasts observed by Moltmann (Philos Stud 162:499–536, 2013a), but only if Scontras’ contention that degrees and numbers are sortally distinct is correct. At the same time, the Easy Argument can establish its intended conclusion only if numbers and degrees are mistakenly assumed to be identical.

Keywords

Number expressions Degrees Specificational clauses Measurement Type-shifting Degree nouns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C., & Morzycki, M. (2013). Degrees as kinds. Natural Language and Linguistic Theory, 33, 791–828.CrossRefGoogle Scholar
  2. Bach, E. (1986). Natural language metaphysics. In R. B. Marcus, et al. (Eds.), Logic, methodology, and the philosophy of science VII (pp. 573–595)Google Scholar
  3. Balcerak Jackson, B. (2013). Defusing easy arguments for numbers. Linguistics and Philosophy, 36, 447–461.CrossRefGoogle Scholar
  4. Barker, C. (1998). Partitives, double genitives, and anti-uniqueness. Natural Language and Linguistic Theory, 4, 679–717.CrossRefGoogle Scholar
  5. Carlson, G. (1977). Amount relatives. Language, 53, 520–542.CrossRefGoogle Scholar
  6. Chierchia, G. (1984). Topics in the syntax and semantics of infinitives and gerunds. PhD thesis, University of Massachusetts at Amherst.Google Scholar
  7. Chierchia, G. (1998). Reference to kinds across languages. Natural Language Semantics, 6, 339–405.CrossRefGoogle Scholar
  8. Comorovsky, I. (2008). Constituent questions and the copula of specification. In I. Comorovsky & K. von Heusinger (Eds.), Existence: Semantics and syntax (pp. 49–77). Berlin: Springer.CrossRefGoogle Scholar
  9. Dummett, M. (1991). Frege: Philosophy of mathematics. London: Duckworth.Google Scholar
  10. Felka, K. (2014). Number words and reference to numbers. Philosophical Studies, 168, 261–268.CrossRefGoogle Scholar
  11. Frana, I. (2006). The de re analysis of concealed questions: A unified approach to definite and indefinite concealed questions. In M. Gibson & J. Howell (Eds.), Proceedings of SALT 16 (pp. 17–34).Google Scholar
  12. Frege, G. (1884). Die Grundlagen der Arithmetik (J. L. Austin as The Foundations of Arithmetic. Blackwell, Oxford 1950 Trans.). Breslau: Koebner.Google Scholar
  13. Geurts, B. (2006). Take ‘five’. In S. Vogleer & L. Tasmowski (Eds.), Non-definiteness and plurality (pp. 311–329). Amsterdam: Benjamins.CrossRefGoogle Scholar
  14. Greenberg, B. (1977). A semantic account of relative clauses with embedded question interpretations. Los Angeles: University of California.Google Scholar
  15. Hale, B. (2016). Definitions of numbers and their applications. In P. Ebert & M. Rossberg (Eds.), Abstractionism (pp. 326–341). Oxford: Oxford University Press.Google Scholar
  16. Hale, B., & Wright, C. (2001). The reason’s proper study: Towards a neo-Fregean philosophy of mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  17. Heim, I. (1979). Concealed questions. In R. Bauerle, U. Egli, & A. von Stechow (Eds.), Semantics from different points of view (pp. 51–60). Berlin: Springer.CrossRefGoogle Scholar
  18. Heim, I. (1987). Where does the definiteness restriction apply? Evidence from the definiteness of variables. In E. Reuland & A. ter Meulen (Eds.), The representation of (in)definiteness (pp. 21–42). Cambridge: MIT Press.Google Scholar
  19. Higgins, R. (1973). The pseudo-cleft construction in english. New York, NY: Garland.Google Scholar
  20. Hodes, H. (1984). Logicism and the ontological commitments of arithmetic. The Journal of Philosophy, 81, 123–149.CrossRefGoogle Scholar
  21. Hofweber, T. (2005). Number determiners, numbers, and arithmetic. The Philosophical Review, 114, 179–225.CrossRefGoogle Scholar
  22. Hofweber, T. (2007). Innocent statements and their metaphysically loaded counterparts. Philosopher’s Imprint, 7, 1–33.Google Scholar
  23. Karttunen, L. (1977). Syntax and semantics of questions. Linguistics and Philosophy, 1, 3–44.CrossRefGoogle Scholar
  24. Kennedy, C. (2012). Adjectives. In G. Russell, & D. Graff Fara (Eds.), Routledge companion to philosophy of language. Routledge.Google Scholar
  25. Kennedy, C. (2013). A scalar semantics for scalar readings of number words. In I. Caponigro & C. Cecchetto (Eds.), From grammar to meaning: The spontaneous logicality of language (pp. 172–200). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Krifka, M. (1989). Nominal reference, temporal constitution, and quantification in event semantics. In J. van Bentham, R. Bartsch, & P. van Emde Boas (Eds.), Semantics and contextual expressions (pp. 75–115). Dordrecht: Foris.Google Scholar
  27. Landman, F. (2004). Indefinites and the type of sets. Oxford: Blackwell.CrossRefGoogle Scholar
  28. Lassiter, D. (2011). Measurement and modality: The scalar basis of modal semantics. PhD thesis, New York University.Google Scholar
  29. Link, G. (1983). The logical analysis of plurals and mass terms: A lattice-theoretic approach. In R. Bäuerle, C. Schwarze, & A. von Stechow (Eds.), Meaning, use, and interpretation of language (pp. 303–323). Berlin: Springer.Google Scholar
  30. Mikkelsen, L. (2005). Copular clauses: Specification, predication, and equation. Amsterdam: Benjamins.CrossRefGoogle Scholar
  31. Mikkelsen, L. (2011). Copular clauses. In K. von Heusinger, C. Maienborn, & P. Portner (Eds.), Semantics: An international handbook of natural language meaning. Berlin: de Gruyter.Google Scholar
  32. Moltmann, F. (2013a). Reference to numbers in natural language. Philosophical Studies, 162, 499–536.CrossRefGoogle Scholar
  33. Moltmann, F. (2013b). The semantics of existence. Linguistics and Philosophy, 36, 31–63.CrossRefGoogle Scholar
  34. Partee, B. (1986a). Ambiguous pseudoclefts with unambiguous Be. In S. Bergman, J. Choe, & J. McDonough (Eds.), Proceedings of the Northwestern linguistics society 16. GLSA. (Reprinted in Compositionality in formal semantics, pp. 190–202, by Partee, 2004, Blackwell).Google Scholar
  35. Partee, B. (1986b). Noun phrase interpretation and type-shifting principles. In J. Groenendijk, D. de Jongh, & M. Stokhof (Eds.), Studies in discourse representation theory and the theory of generalized quantifiers (pp. 115–144). Dordrecht: Foris.Google Scholar
  36. Romero, M. (2005). Concealed questions and specificational subjects. Linguistics and Philosophy, 28(6), 687–737.CrossRefGoogle Scholar
  37. Safir, F. (1982). Syntactic chains and the definiteness effect. PhD thesis, Massachussetts Institute of Technology.Google Scholar
  38. Schwarzschild, R. (2005). Measure phrases as modifiers of adjectives. Recherches Linguistiques de Vincennes, 34, 207–228.CrossRefGoogle Scholar
  39. Scontras, G. (2014). The semantics of measurement. PhD thesis, Harvard University.Google Scholar
  40. Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford: Oxford University Press.Google Scholar
  41. Sharvy, R. (1980). A more general theory of definite descriptions. The Philosophical Review, 89, 607–624.CrossRefGoogle Scholar
  42. Tennant, N. (1997). On the necessary existence of numbers. Nous, 31, 307–336.CrossRefGoogle Scholar
  43. Wright, C. (2000). Neo-Fregean foundations for real analysis: Some reflections on Frege’s constraint. Notre Dame Journal of Formal Logic, 41, 317–334.CrossRefGoogle Scholar
  44. Yablo, S. (2005). The myth of the seven. In M. Kalderon (Ed.), Fictionalist approaches to metaphysics (pp. 90–115). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations