Skip to main content

Granularity and scalar implicature in numerical expressions


It has been generally assumed that certain categories of numerical expressions, such as ‘more than n’, ‘at least n’, and ‘fewer than n’, systematically fail to give rise to scalar implicatures in unembedded declarative contexts. Various proposals have been developed to explain this perceived absence. In this paper, we consider the relevance of scale granularity to scalar implicature, and make two novel predictions: first, that scalar implicatures are in fact available from these numerical expressions at the appropriate granularity level, and second, that these implicatures are attenuated if the numeral has been previously mentioned or is otherwise salient in the context. We present novel experimental data in support of both of these predictions, and discuss the implications of this for recent accounts of numerical quantifier usage.


  1. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219.

    Article  Google Scholar 

  2. Breheny, R. (2008). A new look at the semantics and pragmatics of numerically quantified noun phrases. Journal of Semantics, 25, 93–139.

    Article  Google Scholar 

  3. Chierchia, G. (2004). Scalar implicatures, polarity phenomena and the syntax/pragmatics interface. In A. Belletti (Ed.), Structures and beyond (pp. 39–103). Oxford: Oxford University Press.

    Google Scholar 

  4. Chierchia, G., Fox, D., & Spector, B. (2008). The grammatical view of scalar implicatures and the relationship between semantics and pragmatics. Ms.

  5. Cummins, C. (2011). The interpretation and use of numerically-quantified expressions. PhD thesis, University of Cambridge.

  6. Cummins, C., & Katsos, N. (2010). Comparative and superlative quantifiers: Pragmatic effects of comparison type. Journal of Semantics, 27, 271–305.

    Article  Google Scholar 

  7. Curtin, P. (1995). Prolegomena to a theory of granularity. MA thesis, University of Texas at Austin.

  8. Fox, D., & Hackl, M. (2006). The universal density of measurement. Linguistics and Philosophy, 29, 537–586.

    Article  Google Scholar 

  9. Geurts, B. (2010). Quantity implicatures. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Geurts, B., Katsos, N., Cummins, C., Moons, J., & Noordman, L. (2010). Scalar quantifiers: Logic, acquisition, and processing. Language and Cognitive Processes, 25(1), 130–148.

    Article  Google Scholar 

  11. Geurts, B., & Nouwen, R. (2007). “At least” et al.: The semantics of scalar modifiers. Language, 83, 533–559.

    Article  Google Scholar 

  12. Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383–393.

    Article  Google Scholar 

  13. Horn, L. (1972). On the semantic properties of logical operators in English. UCLA dissertation, distributed by Indiana University Linguistics Club, 1976.

  14. Horn, L. (1984). Toward a new taxonomy for pragmatic inference: Q-based and R-based implicatures. In D. Schiffrin (Ed.), Meaning, form, and use in context (pp. 11–42). Washington: Georgetown University Press.

    Google Scholar 

  15. Jansen, C. J. M., & Pollmann, M. M. W. (2001). On round numbers: Pragmatic aspects of numerical expressions. Journal of Quantitative Linguistics, 8, 187–201.

    Article  Google Scholar 

  16. Krifka, M. (1999). At least some determiners aren’t determiners. In K. Turner (Ed.), The semantics/pragmatics interface from different points of view. Current research in the semantics/pragmatics interface (Vol. 1, pp. 257–292). Oxford: Elsevier.

  17. Krifka, M. (2002). Be brief and vague! And how bidirectional optimality theory allows for verbosity and precision. In D. Restle & D. Zaefferer (Eds.), Sounds and systems. Studies in structure and change: A festschrift for Theo Vennemann (pp. 439–458). Berlin: Mouton de Gruyter.

    Chapter  Google Scholar 

  18. Krifka, M. (2009). Approximate interpretations of number words: A case for strategic communication. In E. Hinrichs & J. Nerbonne (Eds.), Theory and evidence in semantics (pp. 109–132). Stanford: CSLI Publications.

    Google Scholar 

  19. Mason, J. D., Healy, A. F., & Marmie, W. R. (1996). The effects of rounding on memory for numbers in addition problems. Canadian Journal of Experimental Psychology, 50(3), 320–323.

    Article  Google Scholar 

  20. Nouwen, R. (2008). Upper-bounded no more: The exhaustive interpretation of non-strict comparison. Natural Language Semantics, 16(4), 271–295.

    Article  Google Scholar 

  21. Sauerland, U. (2012). The computation of scalar implicatures: Pragmatic, lexical or grammatical? Language and Linguistics Compass, 6, 36–49. doi:10.1002/lnc3.321.

    Article  Google Scholar 

  22. Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Oxford: Blackwell.

    Google Scholar 

  23. Sprouse, J. (2011). A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory. Behavior Research Methods, 43, 155–167.

    Article  Google Scholar 

  24. Wilson, D., & Sperber, D. (2002). Truthfulness and relevance. Mind, 111, 583–632.

    Article  Google Scholar 

Download references


We are grateful to Chris Potts and to two anonymous reviewers for Linguistics and Philosophy, for their valuable comments and suggestions. Portions of this research were presented at the EURO-XPRAG Workshop (Leuven), the 2011 LSA Annual Meeting, the 2011 Annual Meeting of the DGfS, and the 4th Biennial Conference on Experimental Pragmatics, and we would like to thank the various audiences for some very helpful discussions. Financial support for this research was provided by the EURO-XPRAG Network, and by the DFG Grants SA 925/1 and 925/4, the latter within the context of the ESF EuroCORES LogICCC project VAAG. The first author was also supported by a University of Cambridge Domestic Research Studentship. Thanks also to Nicole Gotzner for assistance with the online experiments and to Leah Francis for assistance with the off-line task.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information



Corresponding author

Correspondence to Chris Cummins.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cummins, C., Sauerland, U. & Solt, S. Granularity and scalar implicature in numerical expressions. Linguist and Philos 35, 135–169 (2012).

Download citation


  • Granularity
  • Implicature
  • Quantifiers
  • Constraints
  • Pragmatics
  • Numerals
  • Salience
  • Relevance