Advertisement

Lithology and Mineral Resources

, Volume 40, Issue 4, pp 293–319 | Cite as

Mineral Assemblages as Indicators of the Maturity of Oceanic Hydrothermal Sulfide Mounds

  • N. N. Mozgova
  • Yu. S. Borodaev
  • I. F. Gablina
  • G. A. Cherkashev
  • T. V. Stepanova
Article

Abstract

The composition of ore minerals in MAR sulfide occurrences related to ultramafic rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. The objects are located at various levels of the maturity of sulfide mounds owing to differences in age, duration, and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with the presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and the development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by the presence of homogenous isocubanite and the subordinate development of exsolution structures. We have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in Logatchev-1 and Logatchev-2. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B are formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.

Keywords

Mineral Assemblage Ultramafic Rock Hydrothermal Field Maturity Grade Hydrothermal Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amcoff, O., Heating Experiments of Chalcopyrite-Pyrrhotite Ores: Studies on the Stability of the Intermediate Solid Solution, Neues. Jahrb. Mineral. Monatsh., 1981, pp. 553–568.Google Scholar
  2. Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Handbook of Mineralogy. I. Elements, Sulfides, Sulfosalts, Tuscon: Mineral Data Publ., 1990.Google Scholar
  3. Belov, N.V., Some Aspects of Sulfide Crystallochemistry, Voprosy Petrol. Mineral., 1953, vol. 2, pp. 7–13.Google Scholar
  4. Bogdanov, Yu.A., Gidrotermal’nye rudoproyavleniya Sredinno-Atlanticheskogo khrebta (Hydrothermal Ore Occurrences in the Mid-Atlantic Ridge), Moscow: Nauchnyi Mir, 1997.Google Scholar
  5. Bogdanov, Yu.A. and Sagalevich, A.M., Geologicheskie issledovaniya s glubokovodnykh obitaemykh apparatov “ Mir” (Geological Surveys from Manned Submersibles “Mir”), Moscow: Nauchnyi Mir, 2002.Google Scholar
  6. Bogdanov, Yu.A., Bortnikov, N.S., Vikent’ev, I.V., Gurvich, E.G., and Sagalevich, A.M., A New Type of Modern Mineral-Forming System: Black Smokers of the Hydrothermal Field at 14°45′ N, Mid-Atlantic Ridge, Geol. Rudn. Mestorozhd., 1997, vol. 39, no.1, pp. 68–90 [Geol. Ore Dep. (Engl. Transl.), 1997, vol. 39, no. 1, pp. 58–79].Google Scholar
  7. Bogdanov, Yu.A., Bortnikov, N.S., Vikent’ev, I.V., Lein, A.Yu., Gurvich, E.G., Sagalevich, A.M., Simonov, V.A., Ikorskii, S.V., Stavrova, O.O., and Apollonov, V.N., Mineralogical-Geochemical Peculiarities of Hydrothermal Sulfide Ores and Fluids in the Rainbow Field Associated with Serpentinites, Mid-Atlantic Ridge (36°14′ N), Geol. Rudn. Mestorozhd., 2002, vol. 44, no.6, pp. 510–542 [Geol. Ore Dep. (Engl. Transl.), 2002, vol. 44, no. 6, pp. 444–473].Google Scholar
  8. Borodaev, Yu.S., Mozgova, N.N., Stepanova, T.V., and Cherkashev, G.A., Noble Metals in the Sulfide Associations of Chimneys in the Logatchev Hydrothermal Field (Mid-Atlantic Ridge, 14°45′ N), Vestn. Mos. Gos. Univ., Ser. 4: Geol., 2000, no. 3, pp. 40–49.Google Scholar
  9. Borodaev, Yu.S., Mozgova, N.N., Gablina, I.F., et al., Model of Formation of Black Smoker Zonal Chimneys from Active Mounds (Rainbow, 36°14′ N Mid-Atlantic Ridge), Abstracts of Papers (Part 2), 32nd Int. Geol. Congr., Florence 2004 (Scientific Session), 2004a, p. 1198.Google Scholar
  10. Borodaev, Yu.S., Mozgova, N.N., Gablina, I.F., et al., Zonal Pipes of Black Smokers from the Rainbow Hydrothermal Field (Mid-Atlantic Ridge, 36°14′ N), Vestn. Mos. Gos. Univ., Ser. 4: Geol., 2004b, no. 3, pp. 40–49.Google Scholar
  11. Bortnikov, N.S., Vikentyev, I.V., Appolonov, V.N., et al., The Rainbow Serpentinite-Related Hydrothermal Field, Mid-Atlantic Ridge, 36°14′ N: Mineralogical and Geochemical Features, Proc. Joint Sixth Meeting. Mineral Deposits at the Beginning of the 21st Century, Krakow, 26–29 August, 2001, Lisse: Balkema Publ., 2001, pp. 265–268.Google Scholar
  12. Brett, R., Experimental Data from the System Cu-Fe-S and Their Bearing on Exsolution Textures in Ores, Econ. Geol., 1964, vol. 59, pp. 1241–1260.Google Scholar
  13. Cabri, L.J., New Data on Phase Relations in the Cu-Fe-S System, Econ. Geol., 1973, vol. 68, pp. 443–454.Google Scholar
  14. Caye, R., Cervelle, B., Cesbron, F., et al., Isocubanite, a New Definition of the Cubic Polymorph of Cubanite CuFe2S3, Miner. Mag., 1988, vol. 52, pp. 509–514.Google Scholar
  15. Cherkashev, G., Ashadze, A., Gebruk, A., and Krylova, E., New Fields with Manifestations of Hydrothermal Activity in the Logatchev Area, InterRidge News, 2000, vol. 9, no.2, pp. 26–28.Google Scholar
  16. Chvileva, T.N., Bezsmertnaya, M.S., Spiridonov, E.M., et al., Spravochnik-opredelitel’ rudnykh mineralov v otrazhennom svete (Reference Book for the Identification of Ore Minerals in Reflected Light), Moscow: Nedra, 1988.Google Scholar
  17. Constantinou, G., Idaite from the Skouriotissa Massive Sulfide Orebody, Cyprus: Its Composition and Conditions of Formation, Am. Mineral., 1975, vol. 60, pp. 1013–1018.Google Scholar
  18. Djurle, C., An X-Ray Study of the System Cu-S, Chem. Scan, 1958, vol. 12, no.7, pp. 1415–1426.Google Scholar
  19. Dubut, J.-L., Lafitte, M., and Maury, J., Stoehiometrie evolutive des pyrites terrestres et oceaniques, in C.R. Acad. Sci. Ser. II, Paris, 1982, vol. 295, pp. 587–590.Google Scholar
  20. Eliseev, E.N., Rudenko, L.E., Sinev, L.A., et al., Polymorphism of Copper Sulfides in the Cu2S-Cu1.8S System, in Mineralogicheskii sbornik (Mineralogical Collection), Lvov: Lvov Gos. Univ., 1964, no. 18, pp. 385–400.Google Scholar
  21. Fouquet, Y., Barriga, F., Charlou, J.L., et al., FLORES Diving Cruise with Nautile Near the Azores—First Dives on the Rainbow Field: Hydrothermal Seawater, Mantle Interaction, InterRidge News, 1998, vol. 7, no.1, pp. 24–28.Google Scholar
  22. Gablina, I.F., Mozgova, N.N., Borodaev, Yu.S., et al., Association of Copper Sulfides in Recent Oceanic Ores of the Logatchev Hydrothermal Field (Mid-Atlantic Ridge, 14°45′ N), Geol. Rudn. Mestorozhd., 2000, vol. 42, no.4, pp. 329–349 [Geol. Ore Dep. (Engl. Transl.), 2000, vol. 42, no. 4, pp. 296–316].Google Scholar
  23. Gablina, I.F., Borodaev, Yu.S., Mozgova, N.N., et al., Tetragonal Cu2 − xS in Recent Hydrothermal Ores of the Rainbow Field (Mid-Atlantic Ridge, 36°14′ N), in Novye dannye o mineralakh (New Data on Minerals), Moscow: EKOST, 2004, vol. 39, pp. 102–109 (New Data on Minerals, 2004, vol. 39, Ocean Pictures Ltd., pp. 99–105).Google Scholar
  24. Hannington, M.D., Thompson, G., Rona, P.A., and Scott, S.D., Gold and Native Copper in Supergene Sulfides from the Mid-Atlantic Ridge, Nature, 1988, no. 333, pp. 64–66.Google Scholar
  25. Krasnov, S., Cherkashev, G., Stepanova, T., et al., Detailed Studies of Hydrothermal Fields in the Atlantic, in Hydrothermal Vents and Processes, Parson, L.M., Walker, C.L., and Dixon, D.R., Eds., London: Geol. Soc. Spec. Publ., 1995, vol. 87, pp. 43–64.Google Scholar
  26. Lafitte, M. and Maury, R., Variations de stoechiometrie de chalcopyrites naturelles, Bull. Mineral., 1982, vol. 105, pp. 57–61.Google Scholar
  27. Large, D.J., MacQuaker, J., Vaughan, D.J., et al., Evidence for Low-Temperature Alteration of Sulfides in the Kupferschiefer Copper Deposits of Southwestern Poland, Econ. Geol., 1995, vol. 90, pp. 2143–2155.Google Scholar
  28. Lazareva, L.I., Ashadze, A.M., Batuev, B.N., and Nesterov, A.R., Regularities in the Concentration and Forms of Occurrence of Gold and Silver in Sulfide Ores of the Mir Edifice and Polyarnoe Ore Field in the Mid-Atlantic Ridge, in Voprosy geokhimii i tipomorfizm mineralov (Problems of Geochemistry and Typomorphism of Minerals), St. Petersburg: St. Petersb. Gos. Univ., 1998, pp. 93–105.Google Scholar
  29. Lazareva, L., Cherkashov, G., Stepanova, T., and Batuev, B., Rare Minerals in the Rainbow Deposits, International Conference. Minerals of the Ocean, St. Petersburg, 20–25 April, 2002, pp. 139–140.Google Scholar
  30. Lein, A.Yu., Ul’yanova, N.V., Ul’yanov, A.A., et al., Mineralogy and Geochemistry of Sulfide Ores in Submarine Hydrothermal Fields Associated with Serpentine Protrusions, Ross. Zh. Nauk Zemle, 2001, vol. 3, no.5, pp. 371–391.Google Scholar
  31. Lein, A.Yu., Cherkashev, G.A., Ul’yanov, A.A., et al., Mineralogy and Geochemistry of Sulfide Ores in the Logatchev-2 and Rainbow Hydrothermal Fields: Similar and Distinctive Features, Geokhimiya, 2003, vol. 41, no.3, pp. 304–328 [Geochem. Int. (Engl. Transl.), 2003, vol. 41, no. 3, pp. 271–294].Google Scholar
  32. Lur’e, A.M. and Gablina, I.F., Zonal Sulfide Series in Copper Deposits Associated with Red Rocks, Geokhimiya, 1976, vol. 14, no.1, pp. 109–115.Google Scholar
  33. Merwin, H.E. and Lombard, R.H., The System Cu-Fe-S, Econ. Geol., 1937, vol. 32, pp. 203–284.Google Scholar
  34. Mineraly. Spravochnik (Minerals: Reference Book), Moscow: Akad. Nauk SSSR, 1960, vol. 1, p. 617.Google Scholar
  35. Missack, E., Stoffers, P., and El Goresy, A., Mineralogy, Parageneses, and Phase Relations of Copper-Iron Sulfides in the Atlantis II Deep, Red Sea, Miner. Deposita, 1989, vol. 24, pp. 82–91.Google Scholar
  36. Mozgova, N.N., Borodaev, Yu.S., Tsepin, A.I., et al., Nonstoichiometry of Pyrite and Marcasite from Black Smokers (21° S), Dokl. Akad. Nauk, 1995a, vol. 343, no.6, pp. 795–800.Google Scholar
  37. Mozgova, N.N., Nenasheva, S.N., Borodaev, Yu.S., and Tsepin, A.I., Composition Field and Specific Features of Isocubanite Isomorphism, Geokhimiya, 1995b, vol. 33, no.4, pp. 533–552.Google Scholar
  38. Mozgova, N.N., Krasnov, S.G., Batuev, B.N., et al., The First Report of Cobalt Pentlandite from a Mid-Atlantic Ridge Hydrothermal Deposit, Can. Mineral., 1996, vol. 34, pp. 23–28.Google Scholar
  39. Mozgova, N.N., Efimov, A.V., Borodaev, Yu.S., et al., Mineralogy and Chemistry of Massive Sulfides from the Logatchev Hydrothermal Field (14°44′ N Mid-Atlantic Ridge), Explor. Min. Geol., 1999, vol. 8, no.3/4, pp. 379–395.Google Scholar
  40. Mozgova, N., Borodaev, Yu., Cherkashev, G., et al., High-Temperature Exsolution Structures in Submarine Serpentinite-Related Massive Sulfides (Mid-Atlantic Ridge), International Conference. Minerals of the Ocean, St. Petersburg, 20–25 April, 2002a, pp. 134–137.Google Scholar
  41. Mozgova, N.N., Borodaev, Yu.S., Gablina, I.F., et al., Isocubanite from Sulfide Ores of the Rainbow Hydrothermal Field (Mid-Atlantic Ridge, 36°14′ N), Zap. Vseross. Miner. O-va, 2002b, no. 5, pp. 61–70.Google Scholar
  42. Mozgova, N.N, Fardust, F., Borodaev, Yu.S., and Trubkin, N.V., Isomorphism and Nonstoichiometry of Pentlandite from Black Smokers in the Rainbow and Logatchev Hydrothermal Fields, Zap. Vseross. Miner. O-va, 2005, no. 1, pp. 69–81.Google Scholar
  43. Mumme, W.G., Sparrow, G.J., and Walker, G.S., Roxbyite, a New Copper Sulphide Mineral from the Olympic Dam Deposit, Roxby Downs, South Australia, Miner. Mag., 1988, vol. 52, part 3, pp. 323–330.Google Scholar
  44. Nickel, E.H., Solid Solutions in Mineral Nomenclature, Can. Mineral., 1992, vol. 30, pp. 231–234.Google Scholar
  45. Powell, W.G. and Pattison, D.R.M., An Exsolution Origin for Low-Temperature Sulfides at the Hemlo Gold Deposit, Ontario, Canada, Econ. Geol., 1997, vol. 92, pp. 569–577.Google Scholar
  46. Rajamani, V. and Prewitt, C.T., Crystal Chemistry of Natural Pentlandites, Can. Mineral., 1973, vol. 12, pp. 178–187.Google Scholar
  47. Rambaldi, E.R., Rajan, R.S., Housley, R.M., and Wang, D., Gallium-Bearing Sphalerite in a Metal-Sulfide Nodule of the Qingzhen (EH3) Chondrite, Meteoritics, 1986, vol. 21, no.1, pp. 23–31.Google Scholar
  48. Riley, J.F., The Pentlandite Group (Fe, Ni, Co)9S8: New Data and an Appraisal of Structure-Composition Relationships, Mineral. Mag., 1977, vol. 41, pp. 345–349.Google Scholar
  49. Rona, P.A., Widenfalk, L., and Bostrom, K., Serpentinized Ultramafics and Hydrothermal Activity at the Mid-Atlantic Ridge Crest Near 15° N, J. Geophys. Res., 1987, vol. 92, no.B2, pp. 1417–1427.Google Scholar
  50. Satpaeva, M.K. and Polkanova, E.V., Ferruginous (Anomalous) Bornite in the Dzhezkazgan Ores and Its Extraction from Chalcopyrite, Tr. Inst. Geol. Nauk K.I. Satpaeva, 1978, vol. 38, pp. 105–130.Google Scholar
  51. Satpaeva, M.K., Dara, A.D., Kurmakaeva, F.A., and Polkanova, E.V., X-Bornite in the Dzhezkazgan Ores, Izv. Akad. Nauk Kaz. SSR, Ser. Geol., 1974, no. 6, pp. 51–57.Google Scholar
  52. Sillitoe, R.H. and Clark, A.H., Copper and Copper-Iron Sulphides as the Initial Products of Supergene Oxidation, Copiapo Mining District, Northern Chile, Am. Mineral., 1969, vol. 54, pp. 1684–1710.Google Scholar
  53. Simonov, V.A. and Milosnov, A.A., Physicochemical Conditions of Hydrothermal Processes in the Mid-Atlantic Ridge, Fifteen Twenty Fracture Zone, Geokhimiya, 1996, vol. 34, no.8, pp. 760–766 [Geochem. Int. (Engl. Transl.), 1996, vol. 34, no. 8, pp. 685–690].Google Scholar
  54. Sugaki, A., Shima, H., Kitakaze, A., and Harada, H., Isothermal Phase Relations in the System Cu-Fe-S under Hydrothermal Conditions at 35°C and 300°C, Econ. Geol., 1975, vol. 70, pp. 806–823.Google Scholar
  55. Torokhov, M.P., Cherkashev, G.A., Stepanova, T.V., and Zhirnov, E.A., Uranium, Its Minerals and Parageneses in Massive Sulphides of the Logatchev-2, MAR Ore Field, InterRidge News, 2002, vol. 11, no.2, pp. 32–33.Google Scholar
  56. Ueno, T., Kitakaze, A., and Sugaki, A., Phase Relations in the CuFeS2-FeS Join, Tohoku Univ. Sci. Rept., 1980, Ser. 3, vol. 16, pp. 283–293.Google Scholar
  57. Vaughan, D. and Craig, J., Mineral Chemistry of Metal Sulfides, New York: Cambridge Univ., 1978. Translated under the title Khimiya sul’fidnykh mineralov, Moscow, Mir, 1981.Google Scholar
  58. Vikent’ev, I.V., Formation Conditions and Metamorphism of Massive Sulfide Ores, DSc (Geol.-Miner.) Dissertation, Moscow: IGEM Ross. Akad. Nauk, 2001.Google Scholar
  59. Vikent’ev, I.V., Bortnikov, N.S., Bogdanov, Yu.A., et al., Mineralogy of Hydrothermal Deposits in the Rainbow Field, the Azores Region (Atlantic), in Metallogeniya drevnikh i sovremennykh okeanov (Metallogeny of Ancient and Recent Oceans), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 2000, pp. 103–110.Google Scholar
  60. Wintenberger, M., Andre, G., Garcin, C., et al., Intermediate Valency, Verwey Transition and Magnetic Structures of a New Mineral, Cu1 − εFe3 + εS4, Resulting from the Ageing of Isocubanite, J. Magnet. Magn. Mater., 1994, vol. 132, pp. 31–45.Google Scholar
  61. Yund, R.A. and Kullerud, G., Thermal Stability of Assemblages in the Cu-Fe-S System, J. Petrol., 1966, vol. 7, pp. 454–488.Google Scholar
  62. Zhmodik, S.M., Lisitsyn, A.P., Simonov, V.A., et al., Spatial Distribution of Au in Samples of Oceanic Hydrothermal Sulfide Ores (Logatchev and Broken Spur Fields, MAR), in Metallogeniya drevnikh i sovremennykh okeanov-2001 (Metallogeny of Ancient and Recent Oceans-2001), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 2001, pp. 61–67.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • N. N. Mozgova
    • 1
  • Yu. S. Borodaev
    • 2
  • I. F. Gablina
    • 3
  • G. A. Cherkashev
    • 4
  • T. V. Stepanova
    • 4
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Economic Geology, Geological FacultyMoscow State UniversityVorob’evy gory, MoscowRussia
  3. 3.Geological InstituteRussian Academy of SciencesMoscowRussia
  4. 4.All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNIIOkeanologiya)St. PetersburgRussia

Personalised recommendations