Skip to main content
Log in

Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

The Hankel determinant \({H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\) of logarithmic coefficients is defined as

\({H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right):=\left|\begin{array}{cc}{\Gamma }_{1}& {\Gamma }_{2}\\ {\Gamma }_{2}& {\Gamma }_{3}\end{array}\right|={\Gamma }_{1}{\Gamma }_{3}-{\Gamma }_{2}^{2},\)

where \({\Gamma }_{1},{\Gamma }_{2},\) and \({\Gamma }_{3}\) are the first, second, and third logarithmic coefficients of inverse functions belonging to the class \(\mathcal{S}\) of normalized univalent functions. In this paper, we establish sharp inequalities \(\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 19/288,\) \(\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 1/144,\) and \(\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 1/36\) for the logarithmic coefficients of inverse functions, considering starlike and convex functions, as well as functions with bounded turning of order 1/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ali and A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Am. Math. Soc., 146(3):1131–1142, 2018.

    Article  MathSciNet  Google Scholar 

  2. M.F. Ali, A. Vasudevarao, D.K. Thomas, and A. Lecko, On the third logarithmic coefficients of close-to-convex functions, in Current Research in Mathematical and Computer Sciences II, Univ.Warmia & Mazury, Olsztyn, 2018, pp. 271–278.

  3. V. Allu, V. Arora, and A. Shaji, On the second Hankel determinant of logarithmic coefficients for certain univalent functions, Mediterr. J. Math., 20(2):81, 2023.

    Article  MathSciNet  Google Scholar 

  4. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64(1):95–115, 1907.

    Article  MathSciNet  Google Scholar 

  5. N.E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko, and Y.J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 114(2):52, 2020.

  6. J.H. Choi, Y.C. Kim, and T. Sugawa, A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, 59(3): 707–727, 2007.

    Article  MathSciNet  Google Scholar 

  7. L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154(1–2):137–152, 1985.

    Article  MathSciNet  Google Scholar 

  8. P.L. Duren, Univalent Functions, GrundlehrenMath. Wiss., Vol. 259, Springer, New York, 2001.

  9. D. Girela, Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn., Math., 25(2):337–350, 2000.

  10. A.W. Goodman, Univalent Functions, Mariner, Tampa, FL, 1983.

  11. B. Kowalczyk and A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105(3):458–467, 2022.

    Article  MathSciNet  Google Scholar 

  12. B. Kowalczyk and A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. (2), 45(2):727–740, 2022.

  13. B. Kowalczyk and A. Lecko, The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 117(2):91, 2023.

  14. D.V. Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant for certain subclass of p-valent functions, Complex Var. Elliptic Equ., 60(9):1301–1307, 2015.

    Article  MathSciNet  Google Scholar 

  15. R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., 85(2):225–230, 1982.

    Article  MathSciNet  Google Scholar 

  16. R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Am. Math. Soc., 87(2):251–257, 1983.

    MathSciNet  Google Scholar 

  17. K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., 89(1–2):103–121, 1923.

  18. T.H. Macgregor, Functions whose derivative has a positive real part, Trans. Am. Math. Soc., 104(3):532–537, 1962.

    Article  MathSciNet  Google Scholar 

  19. Arnold Marx, Untersuchungen über schlichte Abbildungen, Math. Ann., 107(1):40–67, 1933.

    Article  MathSciNet  Google Scholar 

  20. I.M. Milin, Univalent Functions and Orthonormal Systems, Transl. Math. Monogr., Vol. 49, AMS, Providence, RI, 1977.

  21. S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, Boca Raton, FL, 2000.

    Book  Google Scholar 

  22. S. Ponnusamy, N.L. Sharma, and K.-J.Wirths, Logarithmic coefficients of the inverse of univalent functions, Results Math., 73:1–20, 2018.

    Article  MathSciNet  Google Scholar 

  23. S. Ponnusamy and T. Sugawa, Sharp inequalities for logarithmic coefficients and their applications, Bull. Sci. Math., 166:102931, 2021.

    Article  MathSciNet  Google Scholar 

  24. M. Raza, A. Riaz, and D.K. Thomas, The third Hankel determinant for inverse coefficients of convex functions, Bull. Aust. Math. Soc., 109(1):94–100, 2024.

    Article  MathSciNet  Google Scholar 

  25. M.I.S. Robertson, On the theory of univalent functions, Ann. Math. (2), 37(2):374–408, 1936.

  26. Y.J. Sim, A. Lecko, and D.K. Thomas, The second Hankel determinant for strongly convex and Ozaki close-to-convex functions, Ann. Mat. Pura Appl. (4), 200(6):2515–2533, 2021.

  27. Y.J. Sim, D.K. Thomas, and P. Zaprawa, The second Hankel determinant for starlike and convex functions of order alpha, Complex Var. Elliptic Equ., 67(10):2423–2443, 2022.

    Article  MathSciNet  Google Scholar 

  28. E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z., 37(1):356–380, 1933.

    Article  MathSciNet  Google Scholar 

  29. D. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Am. Math. Soc., 144(4):1681–1687, 2016.

    Article  MathSciNet  Google Scholar 

  30. Z.-G.Wang, M. Raza, M. Arif, and K. Ahmad, On the third and fourth Hankel determinants for a subclass of analytic functions, Bull. Malays. Math. Sci. Soc. (2), 45:323–359, 2022.

    Article  MathSciNet  Google Scholar 

  31. K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16(3):577–598, 2016.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molla Basir Ahamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sanju Mandal is supported by CSIR-SRF (file No. 09/0096(12546)/2021-EMR-I, dated: 18/12/2023), Govt. of India, New Delhi.

Molla Basir Ahamed r is supported by SERB, SUR/2022/002244, Govt. India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Ahamed, M.B. Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions. Lith Math J 64, 67–79 (2024). https://doi.org/10.1007/s10986-024-09623-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-024-09623-5

MSC

Keywords

Navigation