Skip to main content
Log in

Structural stability for temperature-dependent bidispersive flow in a semi-infinite pipe

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the bidispersive flow describing real phenomena such as reservoir exploitation or landslides with their catastrophic effect on human life. By using the differential inequality technique we derive the L4 norm for temperature and a priori estimates of the solution under Newton’s cooling boundary conditions. Using a prior estimates of the solutions and setting an appropriate “energy” function, we obtain the continuous dependence on the Newton’s cooling coefficient and the interaction coefficient in a semi-infinite pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Ames and B. Straughan, Stability and Newton’s law of cooling in double diffusive flow, J. Math. Anal. Appl., 230(1):57–69, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  2. B.A. Boley, The determination of temperature, stresses, and deflection in two-dimensional thermoelastic problem, J. Aeronaut. Sci., 23:67–75, 1856.

    Article  Google Scholar 

  3. R.L. Borja, X. Liu, and J. A.White, Multiphysics hillslope processes triggering landslides, Acta Geotech., 7(4):261–269, 2012, https://doi.org/10.2118/162772-PA.

    Article  Google Scholar 

  4. A. Castro, D. Córdoba, F. Gancedo, and R. Orive, Incompressible flow in porous media with fractional diffusion, Nonlinearity, 22(8):1791–1815, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Chen and R. Ikehata, The Cauchy problem for the Moore–Gibson–Thompson equation in the dissipative case, J. Differ. Equations, 292:176–219, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Chen and A. Palmieri, Nonexistence of global solutions for the semilinear Moore–Gibson–Thompson equation in the conservative case, Discrete Contin. Dyn. Syst., 40:5513–5540, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  7. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Stud. Math. Appl., Vol. 20, North-Holland, Amsterdam, 1988.

  8. B. de Saint-Venant, Mémoire sur la torsion des prismes, in Mémoirs des Savants Étrangers, Vol. 14, Acad. Sci., Paris, 1855, pp. 233–560.

    Google Scholar 

  9. P. Falsaperla, G. Mulone, and B. Straughan, Bidispersive-inclined convection, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., 472:20160480, 2016, https://doi.org/10.1098/rspa.2016.0480.

  10. F. Franchi, R. Nibbi, and B. Straughan, Continuous dependence on modelling for temperature-dependent bidispersive flow, Proc. R. Soc. Lond., A,Math. Phys. Eng. Sci., 473:20170485, 2017, https://doi.org/10.1098/rspa.2017.0485.

  11. F. Franchi and B. Straughan, Structural stability for the Brinkman equations of porous media, Math. Methods Appl. Sci., 19(16):57–69, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.J. Harfash, Structural stability for two convection models in a reacting fluid with magnetic field effect, Ann. Henri Poincaré, 15(12):2441–2465, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  13. C.O. Horgan and L.T. Wheeler, Spatial decay estimates for the Navier–Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math., 35(1):97–116, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y.F. Li and X.J. Chen, Phragmén–Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34(9):091901, 2022.

    Article  Google Scholar 

  15. Y.F. Li, X.J. Chen, and J.C. Shi, Structural stability in resonant penetrative convection in a Brinkman–Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84(1):979–999, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y.F. Li and C.H. Lin, Continuous dependence for the nonhomogeneousBrinkman–Forchheimer equations in a semiinfinite pipe, Appl. Math. Comput., 244:201–208, 2014.

    MathSciNet  Google Scholar 

  17. Y.F. Li, P. Zeng, and X.J. Chen, The Phragmén–Lindelöf type alternative results for binary heat conduction equations, Appl. Math. Mech., 42(9):968–978, 2021.

    Google Scholar 

  18. C.H. Lin, Spatial decay estimates and energy bounds for the Stokes flow equation, SAACM, 2:249–264, 1992.

    Google Scholar 

  19. C.H. Lin and L.E. Payne, Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow, J. Math. Anal. Appl., 342(1):311–325, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Liu, Continuous dependence for a thermal convection model with temperature dependent solubility, Appl. Math. Comput., 308:18–30, 2017.

    MathSciNet  MATH  Google Scholar 

  21. Y. Liu, Y.W. Lin, and Y.F. Li, Convergence result for the thermoelasticity of type III, Appl.Math. Lett., 26(1):97–102, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Liu, S. Xiao, and Y. Lin, Continuous dependence for the Brinkman–Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simul., 150:66–82, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Liu and S.Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal., Real World Appl., 42:308–333, 2018.

  24. D.A. Nield, Effects of local thermal non-equilibrium in steady convection processes in saturated porous media: Forced convection in a channel, J. Porous Media, 1(2):181–186, 1998.

    MATH  Google Scholar 

  25. D.A. Nield, A note on modelling of local thermal non-equilibrium in a structured porous medium, Int. J. Heat Mass Transfer, 45:4367–4368, 2002.

    Article  MATH  Google Scholar 

  26. D.A. Nield and A.V. Kuznetsov, The onset of convection in a bidisperse porous medium, Int. J. Heat Mass Transfer, 49(17):3068–3074, 2006.

    Article  MATH  Google Scholar 

  27. B.K. Olusola, G. Yu, and R. Aguilera, The use of electromagnetic mixing rules for petrophysical evaluation of dual and triple-porosity reservoirs, Int. J. Rock Mech.Mining Sci., 77:220–236, 2013, https://doi.org/10.2118/162772-PA.

    Article  Google Scholar 

  28. L.E. Payne and J.C. Song, Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinite cylinder, Contin. Mech. Thermodyn., 9(3):175–190, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  29. L.E. Payne and J.C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40(9):943–956, 2002.

    Article  MATH  Google Scholar 

  30. L.E. Payne and J.C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differ. Equations, 244(2):413–430, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  31. E.J. Pooley, Centrifuge Modelling of Ground Improvement for Double Porosity Clay, Phd thesis, ETH Zurich, 2015.

  32. R. Quintanilla, Structural stability and continuous dependence of solutions in thermoelasticity of type III, Discrete Contin. Dyn. Syst., Ser. B, 1(4):463–470, 2001.

  33. R. Quintanilla, Convergence and structural stability in thermoelasticity, Appl. Math. Comput., 135(2–3):287–300, 2003.

    MathSciNet  MATH  Google Scholar 

  34. N.L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399(2):667–675, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  35. N.L. Scott and B. Straughan, Continuous dependence on the reaction terms in porous convection with surface reactions, Q. Appl. Math., 71(3):501–508, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Straughan, Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Adv.Mech.Math., Vol. 32, Springer, Cham, 2015.

  37. B. Straughan, Mathematical Aspects of Multi-Porosity Continua, Adv.Mech.Math., Vol. 38, Springer, Cham, 2017.

  38. B. Straughan, Heated and salted below porous convection with generalized temperature and solute boundary conditions, Transp. Porous Media, 131(2):617–631, 2020.

    Article  MathSciNet  Google Scholar 

  39. B. Straughan, Continuous dependence and convergence for a Kelvin–Voigt fluid of order one, Ann Univ Ferrara, Sez. VII, Sci. Mat., 68(1):49–61, 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuanfei Li is supported by the Key projects of universities in Guangdong Province (Natural Science) (2019KZDXM042) and Research team project of Guangzhou Huashang College (2021HSKT01).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, X. Structural stability for temperature-dependent bidispersive flow in a semi-infinite pipe. Lith Math J 63, 337–366 (2023). https://doi.org/10.1007/s10986-023-09600-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-023-09600-4

MSC

Keywords

Navigation