Abstract
In this paper, we apply the circle method to study the average behavior of the triple divisor function over values of quadratic form \( {n}_1^2+{n}_2^2+\cdots +{n}_l^2 \) with l ⩾ 3. We improve and generalize previous results.
This is a preview of subscription content, access via your institution.
References
- 1.
C. Calderón and M. J. de Velasco, On divisors of a quadratic form, Bol. Soc. Bras. Mat., Nova Sér., 31(1):81–91, 2000.
- 2.
F. Chamizo and H. Iwaniec, On the sphere problem, Rev. Mat. Iberoam., 11(2):417–429, 1995.
- 3.
J. Chen, Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II, Sci. Sin., 12:751–764, 1963.
- 4.
R. T. Guo and W. G. Zhai, Some problems about the ternary quadratic form \( {m}_1^2+{m}_2^2+{m}_3^2 \), Acta Arith., 156(2):101–121, 2012.
- 5.
D. R. Heath-Brown, Lattice points in the sphere, in Number Theory in Progress, Vol. 2, Walter de Gruyter, Berlin, 1999, pp. 883–892.
- 6.
L. Q. Hu and L. Yang, Sums of the triple divisor function over values of a quaternary quadratic form, Acta Arith., 183(1):63–85, 2018.
- 7.
M. N. Huxley, Area, Lattice Points, and Exponential Sums, Lond. Math. Soc. Monogr., New Ser., No. 13, Clarendon Press, Oxford, 1996.
- 8.
A. Ivimć, On the ternary additive divisor problem and the sixth moment of the zeta-function, in G. R. H. Greaves, G. Harman, and M. N. Huxley (Eds.), Sieve methods, Exponential Sums, and Their Applications in Number Theory. Proceedings of a Symposium Held in Cardiff, July 1995), Lond. Math. Soc. Lect. Note Ser., Vol. 237, Cambridge Univ. Press, Cambridge, 1997, pp. 205–243.
- 9.
H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloq. Publ., Am. Math. Soc., Vol. 53, AMS, Providence, RI, 2004.
- 10.
Y. J. Jiang and G. S. Lü, Shifted convolution sums for higher rank groups, Forum Math., 31(2):361–383, 2019.
- 11.
X. Q. Li, The Voronoi formula for the triple divisor function, in J. Liu (Ed.), Lecture Notes from the Conference CIMPA-UNESCO-CHINA Research School 2010: Automorphic Forms and L-functions,Weihai, China, August 1–14, 2010, Adv. Lect. Math. (ALM), Vol. 30, Int. Press / Higher Education Press, Somerville, MA/ Beijing, 2014, pp. 69–90.
- 12.
X. M. Ren and Y. B. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GLm(ℤ), Sci. China, Math., 58(10):2105–2124, 2015.
- 13.
P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313:161–170, 1980.
- 14.
Q. F. Sun and D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168:215–246, 2016.
- 15.
R. Vaughan, The Hardy–Littlewood Method, 2nd ed., Cambridge Tracts Math., Vol. 125, Cambridge Univ. Press, Cambridge, 1997.
- 16.
I. M. Vinogradov, On the number of integer points in a sphere, Izv. Akad. Nauk SSSR, Ser. Mat., 27:957–968, 1963 (in Russian).
- 17.
L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163(2):161–177, 2014.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported in part by NSFC (Nos. 11771252, 11531008).
Rights and permissions
About this article
Cite this article
Hu, G., Hu, W. Average behavior of the triple divisor function over values of quadratic form. Lith Math J (2020). https://doi.org/10.1007/s10986-020-09500-x
Received:
Revised:
Published:
Keywords
- triple divisor function
- circle method
MSC
- 11E25
- 11P55