A Note on the Vertex Degree Distribution of Random Intersection Graphs

Abstract

We establish the asymptotic degree distribution of the typical vertex of inhomogeneous and passive random intersection graphs under minimal moment conditions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Bloznelis, Degree distribution of a typical vertex in a general random intersection graph, Lith. Math. J., 48(1):38–45, 2008.

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    M. Bloznelis, Degree and clustering coefficient in sparse random intersection graphs, Ann. Appl. Probab., 23(3): 1254–1289, 2013.

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    M. Bloznelis and J. Damarackas, Degree distribution of an inhomogeneous random intersection graph, Electron. J. Comb., 20(R3), 2013.

  4. 4.

    M. Bloznelis, E. Godehardt, J. Jaworski, V. Kurauskas, and K. Rybarczyk, Recent progress in complex network analysis: Models of random intersection graphs, in B. Lausen, S. Krolak-Schwerdt, and M. Böhmer (Eds.), Data Science, Learning by Latent Structures, and Knowledge Discovery, Springer, Berlin, Heidelberg, 2015, pp. 69–78.

    Google Scholar 

  5. 5.

    M. Deijfen and W. Kets, Random intersection graphs with tunable degree distribution and clustering, Probab. Eng. Inf. Sci., 23(4):661–674, 2009.

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    A. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge Univ. Press, Cambridge, 2016.

    Google Scholar 

  7. 7.

    E. Godehardt and J. Jaworski, Two models of random intersection graphs and their applications, Electron. Notes Discrete Math., 10:129–132, 2001.

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    J. Jaworski, M. Karoński, and D. Stark, The degree of a typical vertex in generalized random intersection graph models, Discrete Math., 306(18):2152–2165, 2006.

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    J. Jaworski and D. Stark, The vertex degree distribution of passive random intersection graph models, Comb. Probab. Comput., 17(4):549–558, 2008.

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    M. Karoński, E.R. Scheinerman, and K.B. Singer-Cohen, On random intersection graphs: The subgraph problem, Comb. Probab. Comput., 8(1–2):131–159, 1999.

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    V. Kurauskas, On local weak limit and subgraph counts for sparse random graphs, 2015, arXiv:1504.08103v2.

  12. 12.

    K. Rybarczyk, The degree distribution in random intersection graphs, in W. Gaul, A. Geier-Schulz, L. Schmidt-Thieme, and J. Kunze (Eds.), Challenges at the Interface of Data Analysis, Computer Science, and Optimization, Springer, Berlin, Heidelberg, New York, 2012, pp. 291–299.

    Google Scholar 

  13. 13.

    Y. Shang, Degree distributions in general random intersection graphs, Electron. J. Comb., 17(R23), 2010.

    Google Scholar 

  14. 14.

    P.G. Spirakis, S. Nikoletseas, and C. Raptopoulos, A guided tour in random intersection graphs, in F.V. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg (Eds.), Automata, Languages, and Programming, 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8–12, 2013, Proceedings, Part II, Lect. Notes Comput. Sci., Vol. 7966, Springer, Berlin, Heidelberg, New York, 2013, pp. 29–35.

    Google Scholar 

  15. 15.

    D. Stark, The vertex degree distribution of random intersection graphs, Random Struct. Algorithms, 24(3):249–258, 2004.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Bloznelis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloznelis, M. A Note on the Vertex Degree Distribution of Random Intersection Graphs. Lith Math J 60, 452–455 (2020). https://doi.org/10.1007/s10986-020-09496-4

Download citation

Keywords

  • degree distribution
  • random graph
  • random intersection graph
  • power law

MSC

  • 05C80
  • 05C07
  • 05C82