Skip to main content
Log in

Exponential tail estimates in the law of ordinary logarithm (LOL) for triangular arrays of random variables

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We derive exponential bounds for the tail of the distribution of normalized sums of triangular arrays of random variables, not necessarily independent, under the law of ordinary logarithm.

Furthermore, we provide estimates for partial sums of triangular arrays of independent random variables belonging to suitable grand Lebesgue spaces and having heavy-tailed distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Ahmed, A. Fiorenza, M.R. Formica, A. Gogatishvili, and J.M. Rakotoson, Some new results related to Lorentz -spaces and interpolation, J. Math. Anal. Appl., 483(2):123-623, 2020.

    MathSciNet  MATH  Google Scholar 

  2. G. Anatriello and A. Fiorenza, Fully measurable grand Lebesgue spaces, J. Math. Anal. Appl., 422(2):783–797, 2015.

    MathSciNet  MATH  Google Scholar 

  3. G. Anatriello and M.R. Formica, Weighted fully measurable grand Lebesgue spaces and the maximal theorem, Ric. Mat., 65(1):221–233, 2016.

    MathSciNet  MATH  Google Scholar 

  4. Yu.K. Belyaev (Ed.), Random processes. Sample paths and intersections. Collection of Articles, News in Foreign Science: Mathematics, Vol. 11, MIR, Moscow, 1978 pp. 249–257 (in Russian). Translation by V.I. Piterbarg.

  5. S.N. Bernstein, About some modifications of Chebyshev’s inequality, in Collected Works. Vol. 4: Theory of Probability and Mathematical Statistics, AN USSR, Moscow, 1964, pp. 330–337 (in Russian).

  6. M.Sh. Braverman, Bounds on the sums of independent random variables in symmetric spaces, Ukr. Math. J., 43(2): 148–153, 1991.

    MATH  Google Scholar 

  7. M.Sh. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, Lond. Math. Soc. Lect. Note Ser., Vol. 194, Cambridge Univ. Press, Cambridge, 1994.

  8. V.V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, Transl. Math. Monogr., Vol. 188, AMS, Providence, RI, 2000.

  9. C. Capone, M.R. Formica, and R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal., Theory Mrthods Appl., 85:125–131, 2013.

    MathSciNet  MATH  Google Scholar 

  10. S.V. Ermakov and E.I. Ostrovsky, Continuity Conditions, Exponential Estimates and the Central Limit Theorem for Random Fields, VINITY, Moscow, 1986 (in Russian).

    Google Scholar 

  11. T. Figiel, P. Hitczenko, W.B. Johnson, G. Schechtman, and J. Zinn, Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities, Trans. Am. Math. Soc., 349(3):997–1027, 1997.

    MathSciNet  MATH  Google Scholar 

  12. A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51(2):131–148, 2000.

    MathSciNet  MATH  Google Scholar 

  13. A. Fiorenza, M.R. Formica, and A. Gogatishvili, On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s, Differ. Equ. Appl., 10(1):21–46, 2018.

    MathSciNet  MATH  Google Scholar 

  14. A. Fiorenza, M.R. Formica, A. Gogatishvili, T. Kopaliani, and J.M. Rakotoson, Characterization of interpolation between grand, small or classical Lebesgue spaces, Nonlinear Anal., 177(Part B):422–453, 2018.

    MathSciNet  MATH  Google Scholar 

  15. A. Fiorenza, M.R. Formica, and J.M. Rakotoson, Pointwise estimates for -functions and applications, Differ. Integral Equ., 30(11–12):809–824, 2017.

    MathSciNet  MATH  Google Scholar 

  16. A. Fiorenza, B. Gupta, and P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Stud. Math., 188(2):123–133, 2008.

    MathSciNet  MATH  Google Scholar 

  17. A. Fiorenza and G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwend., 23(4):657–681, 2004.

    MathSciNet  MATH  Google Scholar 

  18. M.R. Formica and R. Giova, Boyd indices in generalized grand Lebesgue spaces and applications, Mediterr. J.Math., 12(3):987–995, 2015.

    MathSciNet  MATH  Google Scholar 

  19. P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application, Probab. Math. Stat., Academic Press, New York, London, 1980.

    MATH  Google Scholar 

  20. P. Hartman and A. Wintner, On the law of iterated logarithm, Am. J. Math., 63:169–176, 1941.

    MATH  Google Scholar 

  21. T.C. Hu, On the law of the iterated logarithm for arrays of random variables, Commun. Stat. Theory Methods, 20(7):1989–1994, 1991.

    MathSciNet  MATH  Google Scholar 

  22. T.C. Hu and N.C. Weber, On the rate of convergence in the strong law of large numbers for arrays, Bull. Aust. Math. Soc., 45(3):479–482, 1992.

    MathSciNet  MATH  Google Scholar 

  23. R. Ibragimov and Sh. Sharakhmetov, On an exact constant for the Rosenthal inequality, Teor. Veroyatn. Primen., 42(2):341–350, 1997 (in Russian). English transl.: Theory Probab. Appl., 42(2):294–302, 1997.

  24. T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 119(2):129–143, 1992.

    MathSciNet  MATH  Google Scholar 

  25. W.B. Johnson, G. Schechtman, and J. Zinn, Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab., 13(1):234–253, 1985.

    MathSciNet  MATH  Google Scholar 

  26. D. Kievinaitė and J. Šiaulys, Exponential bounds for the tail probability of the supremum of an inhomogeneous random walk, Mod. Stoch., Theory Appl., 5(2):129–143, 2018.

    MathSciNet  MATH  Google Scholar 

  27. A.N. Kolmogoroff, Über das gesetz des iterierten Logarithmus, Math. Ann., 101(1):126–135, 1929.

    MathSciNet  MATH  Google Scholar 

  28. Yu.V. Kozachenko, Yu.Yu. Mlavets, and N.V. Yurchenk, Weak convergence of stochastic processes from spaces Fψ(Ω), Statistics, Optimization & Information Computing, 6(2):266–277, 2018.

    MathSciNet  Google Scholar 

  29. Yu.V. Kozachenko and E.I. Ostrovsky, Banach Spaces of random variables of sub-Gaussian type, Teor. Veroyatn. Mat. Stat., Kiev, 32(134):42–53, 1985 (in Russian). English transl.: Theory Probab. Math. Stat., 32:45–56, 1986

  30. E. Liflyand, E. Ostrovsky, and L. Sirota, Structural properties of bilateral grand Lebesque spaces, Turk. J. Math., 34(2):207–219, 2010.

    MathSciNet  MATH  Google Scholar 

  31. K.W. Ng, Q.K. Tang, and H. Yang, Maxima of sums of heavy-tailed random variables, ASTIN Bull., 32(1):43–55, 2002.

    MathSciNet  MATH  Google Scholar 

  32. E.I. Ostrovsky, Two-sided exponential inequalities for the distribution of the norm of Banach space valued random variables, in V.V. Sazonov and T.L. Shervashidze (Eds.), Proceedings of the Bakuriani Colloquium in Honour of Yu.V. Prohorov, Bakuriani, Georgia, USSR, 24 February–4 March, 1990, New Trends Probab. Stat., Vol. 1, Mokslas/VSP, Vilnius/Utrecht, 1991, pp. 246–254.

    Google Scholar 

  33. E.I. Ostrovsky, Exponential estimate in the law of iterated logarithm in Banach space, Math. Notes, 56(5–6):1165–1171, 1994.

    MathSciNet  Google Scholar 

  34. E.I. Ostrovsky, Exponential Estimations for Random Fields, OINPE, Moscow, Obninsk, 1999.

    Google Scholar 

  35. E.I. Ostrovsky and L. Sirota, Moment Banach spaces: Theory and applications, HIAT Journal of Science and Engineering C, 4(1–2):233–262, 2007.

    Google Scholar 

  36. J. Pickands, Maxima of stationary Gaussian processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., 7:190–223, 1967.

    MathSciNet  MATH  Google Scholar 

  37. G. Pisier, Conditions d’entropie assurant la continuité de certains processus et applications à l’analyse harmonique, Séminaire d’analyse fonctionnelle (Polytechnique), 1979–1980(13–14):43, 1980.

  38. Y.C. Qi, On strong convergence of arrays, Bull. Aust. Math. Soc., 50(2):219–223, 1994.

    MathSciNet  MATH  Google Scholar 

  39. K.V. Ral’chenko, The two-parameter Garsia–Rodemich–Rumsey inequality and its application to fractional Brownian fields„ Teor. Ĭmovirn. Mat. Stat., 75:144–154, 2006 (in Ukrainian). English transl.: Theory Probab. Math. Stat., 75:167–178, 2007

  40. H.P. Rosenthal, On the subspaces of Lp(p > 2) spanned by sequences of independent random variables, Isr. J.Math., 8:273–303, 1970.

    MATH  Google Scholar 

  41. S.G. Samko and S.M. Umarkhadzhiev, On Iwaniec–Sbordone spaces on sets which may have infinite measure, Azerb. J. Math., 1(1):67–84, 2011.

    MathSciNet  MATH  Google Scholar 

  42. S.G. Samko and S.M. Umarkhadzhiev, On Iwaniec–Sbordone spaces on sets which may have infinite measure: Addendum, Azerb. J. Math., 1(2):143–144, 2011.

    MATH  Google Scholar 

  43. M.S. Sgibnev, On the distribution of the maxima of partial sums, Stat. Probab. Lett., 28(3):235–238, 1996.

    MathSciNet  MATH  Google Scholar 

  44. M.S. Sgibnev, Exact asymptotic behavior of the distribution of the supremum, Azerb. J. Math., 52:301–311, 2001.

    MATH  Google Scholar 

  45. W.F. Stout, Almost Sure Convergence. Probability and Mathematical Statistics, A Series of Monographs and Textbooks, Vol. 24, Academic Press, New York, London, 1974.

  46. S.H. Sung, An analogue of Kolmogorov’s law of the iterated logarithm for arrays, Bull. Aust. Math. Soc., 54(2):177–182, 1996.

    MathSciNet  MATH  Google Scholar 

  47. M. Talagrand, Majorizing measures: The generic chaining, Ann. Probab., 24(3):1049–1103, 1996.

    MathSciNet  MATH  Google Scholar 

  48. H. Teicher, Almost certain behavior of row sums of double arrays, in D. Dugué, E. Lukacs, and V.K. Rohatgi (Eds.), Analytical Methods in Probability Theory. Proceedings of the Conference Held at Oberwolfach, Germany, June 9–14, 1980, Lect. Notes Math., Vol. 861, Springer, Berlin, Heidelberg, 1981, pp. 155–165.

    Google Scholar 

  49. R.E.Welsch, A convergence theorem for extreme values from Gaussian sequences, Ann. Probab., 1:398–404, 1973.

    MathSciNet  MATH  Google Scholar 

  50. R. Wittmann, A general law of iterated logarithm, Z. Wahrscheinlichkeitstheor. Verw. Geb., 68(4):521–543, 1985.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Formica.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Università degli Studi di Napoli Parthenope through the project “sostegno alla Ricerca individuale”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formica, M.R., Vasil’ovich Kozachenko, Y., Ostrovsky, E. et al. Exponential tail estimates in the law of ordinary logarithm (LOL) for triangular arrays of random variables. Lith Math J 60, 330–358 (2020). https://doi.org/10.1007/s10986-020-09481-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-020-09481-x

MSC

Keywords

Navigation