Skip to main content
Log in

Estimation of Pickands dependence function of bivariate extremes under mixing conditions

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper, we study some asymptotic properties of CFG estimator of the Pickands dependence function of strictly stationary absolutely regular sequences of bivariate extremes. We then propose an asymptotic test of independence of the vector margins. Finite sample properties of the estimate are investigated by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Bacro, N. Bel, and C. Lantuéjoul, Testing the independence of maxima: From bivariate vectors to spatial extreme fields, Extremes, 13(2):155–175, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Berghaus, A. Bucher, and H. Dette, Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence, J. SFdS, 154(1):116–137, 2013.

    MathSciNet  MATH  Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  4. M. Boutahar, Comparison of non-parametric and semi-parametric tests in detecting long memory, J. Appl. Stat., 36(9):945–972, 2009.

    Article  MathSciNet  Google Scholar 

  5. A. Bücher, H. Dette, and S. Volgushev, New estimators of the Pickands dependence function and a test for extremevalue dependence, Ann. Stat., 39(4):1963–2006, 2011.

    Article  MATH  Google Scholar 

  6. P. Capéraà, A.L. Fougères, and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika, 84(3):567–577, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Cormier, C. Genest, and J.G. Nešlehovà, Using B-splines for nonparametric inference on bivariate extreme-value copulas, Extremes, 17(4):633–659, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dedecker, E. Rio, and F. Merlevède, Strong approximation of the empirical distribution function for absolutely regular sequences in ℝd, Electron. J. Probab., 19:9, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions, Stat. Prob. Lett., 12(5):429–439, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Ferreira, A new estimator for the Pickands dependence function, Journal of Modern Applied Statistical Methods, 16(1):350–363, 2017.

    Article  MathSciNet  Google Scholar 

  11. A. Fils-Villetard, A. Guillou, and J. Segers, Projection estimators of Pickands dependence functions, Can. J. Stat., 36(3):369–382, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Genest and J. Segers, Rank-based inference for bivariate extreme-value copulas, Ann. Stat., 37(5):2990–3022, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  13. B.V. Gnedenko, Sur la distribution limite du terme maximum of d’une série aléatorie, Ann.Math. (2), 44(3):423–453, 1943.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Gudendorf and J. Segers, Nonparametric estimation of an extreme-value copula in arbitrary dimensions, J. Multivariate Anal., 102(1):37–47, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Gudendorf and J. Segers, Nonparametric estimation of multivariate extreme-value copulas, J. Stat. Plann. Inference, 142(12):3073–3085, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  16. E.J. Gumbel, Bivariate exponential distributions, J. Am. Stat. Assoc., 55(292):698–707, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. De Haan and J. De Ronde, Sea and wind: Multivariate extremes at work, Extremes, 1(1):7–45, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions, Bernoulli, 6(5):835–844, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hsing, Extreme value theory for multivariate stationary sequences, J. Multivariate Anal., 29(2):274–291, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Hüsler, Multivariate extreme values in stationary random sequences, Stochastic Processes Appl., 35(1):99–108, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Hüsler and D. Li, Testing asymptotic independence in bivariate extremes, J. Stat. Plann. Inference, 139(3):990–998, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.R. Jimémez, E. Villa-Diharce, and M. Flores, Nonparametric estimation of the dependence function in bivariate extreme value distributions, J. Multi- variate Anal., 76(2):159–191, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.R. Leadbetter, On extreme values in stationary sequences, Probab. Theory Relat. Fields, 28(4):289–303, 1974.

    MathSciNet  MATH  Google Scholar 

  24. M.R. Leadbetter, Extremes and local dependence in stationary sequences, Probab. Theory Relat. Fields, 65(2):291–306, 1983.

    MathSciNet  MATH  Google Scholar 

  25. G. Marcon, S.A. Padoan, P. Naveau, P.Muliere, and J. Segers, Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials, J. Stat. Plann. Inference, 183:1–17, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Naveau, A. Guillou, D. Cooley, and J. Diebolt, Modelling pairwise dependence of maxima in space, Biometrika, 96(1):1–17, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Pickands, Multivariate extreme value distributions, Bull. Int. Stat. Inst., 49:859–878, 1981.

    MathSciNet  MATH  Google Scholar 

  28. M.B. Priestley, Spectral Analysis and Time Series, Vols. 1–2, Probab. Math. Stat., Elsevier, North-Holland, 1982.

  29. S. Qi-Man and Y. Hao, Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab., 24:2098–2127, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants, Mathématiques et Applications, Vol. 31, Springer, Berlin, Heidelberg, 2000.

  31. Y.A. Rozanov and V.A. Volkonskii, Some limit theorems for random functions. I, Theory Probab. Appl., 4(2):178–197, 1959.

  32. J. Segers, Nonparametric inference for bivariate extreme-value copulas, in M. Ahsanullah and S.N.U.A. Kirmani (Eds.), Topics in Extreme Values, New York, 2007, pp. 185–207.

  33. J.A. Tawn, Bivariate extreme value theory: Models and estimation, Biometrika, 75(3):397–415, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Tiago de Oliveira, Bivariate extreme: Foundations and statistics, in P.R. Krishnaiah (Ed.), Multivariate Analysis–V: Proceedings of the Fifth International Symposium on Multivariate Analysis, Elsevier, North-Holland, 1980, pp. 349–368.

    Google Scholar 

  35. D. Zhang, M.T.Wells, and L. Peng, Nonparametric estimation of the dependence function for a multivariate extreme value distribution, J. Multivariate Anal., 99(4):577–588, 2008.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boutahar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutahar, M., Kchaou, I. & Reboul, L. Estimation of Pickands dependence function of bivariate extremes under mixing conditions. Lith Math J 60, 129–146 (2020). https://doi.org/10.1007/s10986-020-09472-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-020-09472-y

Keywords

MSC

Navigation