Skip to main content
Log in

Risk forecasting in the context of time series*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We propose an approach for forecasting risk contained in future observations in a time series. We take into account both the shape parameter and the extremal index of the data. This significantly improves the quality of risk forecasting over methods that are designed for i.i.d. observations and over the return level approach. We prove functional joint asymptotic normality of the common estimators of the shape parameter and and extremal index estimators, based on which statistical properties of the proposed forecasting procedure can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  2. R. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv., 2:107–144, 2005.

    Article  MathSciNet  Google Scholar 

  3. S. Csörgo and D. Mason, Central limit theorems for sums of extreme values, Math. Proc. Camb. Philos. Soc., 98:547–588, 1985.

    Article  MathSciNet  Google Scholar 

  4. L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, New York, 2006.

    Book  Google Scholar 

  5. H. Drees, Weighted approximations of tail processes for _-mixing random variables, Ann. Appl. Probab., 10:1274–1301, 2000.

    MathSciNet  MATH  Google Scholar 

  6. H. Drees, Extreme quantile estimation for dependent data, with applications to finance, Bernoulli, 9:617–657, 2003.

    Article  MathSciNet  Google Scholar 

  7. H. Drees, Bias correction for estimators of the extremal index, preprint, 2011, arXiv:1107.0935.

  8. P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997.

    Book  Google Scholar 

  9. C. Goldie and R. Smith, Slow variation with remainder: Theory and applications, Q. J. Math., 38:45–71, 1987.

    Article  MathSciNet  Google Scholar 

  10. E.J. Gumbel, Statistics of Extremes, Columbia Univ. Press, New York, 1958.

    Book  Google Scholar 

  11. P. Hall, On some simple estimates of an exponent of regular variation, J. R. Stat. Soc., Ser. B, 44:37–42, 1982.

    MathSciNet  Google Scholar 

  12. B. Hill, A simple general approach to inference about the tail of a distribution, Ann. Stat., 3:1163–1174, 1975.

    Article  MathSciNet  Google Scholar 

  13. T. Hsing, On tail index estimation using dependent data, Ann. Stat., 19:1547–1569, 1991.

    Article  MathSciNet  Google Scholar 

  14. T. Hsing, Extremal index estimation for a weakly dependent stationary sequence, Ann. Stat., 21:2043–2071, 1993.

    Article  MathSciNet  Google Scholar 

  15. J.P. III, Statistical inference using extreme order statistics, Ann. Stat., 3:119–131, 1975.

    Article  MathSciNet  Google Scholar 

  16. Z. Lin and Y. Choi, Some limit theorems for fractional Lévy Brownian fields, Stochastic Processes Appl., 82:229–244, 1999.

    Article  MathSciNet  Google Scholar 

  17. D. Pollard, Convergence of Stochastic Processes, Springer, 1984.

  18. S. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York, 1987.

    MATH  Google Scholar 

  19. S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007.

    MATH  Google Scholar 

  20. S. Resnick and C. Stӑricӑ, Smoothing the Hill estimator, Adv. Appl. Probab., 20:271–293, 1997.

    Article  MathSciNet  Google Scholar 

  21. S. Resnick and C. Stӑricӑ, Tail index estimation for dependent data, Ann. Appl. Probab., 8:1156–1183, 1998.

    Article  MathSciNet  Google Scholar 

  22. H. Rootzén, The tail empirical process for stationary sequences, preprint, 1995.

    Google Scholar 

  23. H. Rootzén, Weak convergence of the tail empirical process for dependent sequences, Stochastic Processes Appl., 119(2):468–490, 2009.

    Article  MathSciNet  Google Scholar 

  24. W. Vervaat, Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrscheinlichkeitstheor. Verw. Geb., 23:245–253, 1972.

    Article  MathSciNet  Google Scholar 

  25. I. Weissman and S. Novak, On blocks and runs estimators of the extremal index, J. Stat. Plann. Inference, 66:281–288, 1998.

    Article  MathSciNet  Google Scholar 

  26. M. Wichura, On the construction of almost uniformly convergent random variables with given weakly convergent image laws, Ann. Math. Stat., 41:284–291, 1970.

    Article  MathSciNet  Google Scholar 

  27. D. Zajdenweber, Extreme values in business interruption insurance, The Journal of Risk and Insurance, 63:95–110, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Lu.

Additional information

Dedicated to Vygantas Paulauskas, an inspiration and a friend

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

*This research was partially supported by the ARO grants W911NF-12-10385 and W911NF-18 -10318 at Cornell University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Samorodnitsky, G. Risk forecasting in the context of time series*. Lith Math J 59, 545–574 (2019). https://doi.org/10.1007/s10986-019-09467-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09467-4

MSC

Keywords

Navigation