Skip to main content
Log in

Calibrated bootstrap and saddlepoint approximations of finite population L-statistics

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We propose two methods to approximate the distribution function of a Studentized linear combination of order statistics for a simple random sample drawn without replacement from a finite population. Using auxiliary data available for the population units, the first method modifies a nonparametric bootstrap approximation, and the second one corrects an empirical saddlepoint approximation based on the bootstrap. We conclude from simulations that, on the tails of distribution of interest, both approximations improve their initial versions and alternative Edgeworth approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Agho, W. Dai, and J. Robinson, Empirical saddlepoint approximations of the Studentized ratio and regression estimates for finite populations, Stat. Probab. Lett., 71(3):237–247, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Barbiero, G. Manzi, and F. Mecatti, Bootstrapping probability-proportional-to-size samples via calibrated empirical population, J. Stat. Comput. Simulation, 85(3):608–620, 2015.

    Article  MathSciNet  Google Scholar 

  3. M. Bloznelis, Empirical Edgeworth expansion for finite population statistics. I, Lith. Math. J., 41(2):120–134, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bloznelis, Edgeworth expansions for Studentized versions of symmetric finite population statistics, Lith. Math. J., 43(3):221–240, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bloznelis, Bootstrap approximation to distributions of finite population U-statistics, Acta Appl. Math., 96:71–86, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bloznelis and F. Götze, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics, Ann. Stat., 29(3):899–917, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bogdan, Asymptotic distributions of linear combinations of order statistics, Appl. Math., 22(2):201–225, 1994.

    MathSciNet  MATH  Google Scholar 

  8. J.G. Booth, R.W. Butler, and P. Hall, Bootstrap methods for finite populations, J. Am. Stat. Assoc., 89(428):1282–1289, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Chen and J. Qin, Empirical likelihood estimation for finite populations and the effective usage of auxiliary information, Biometrika, 80(1):107–116, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Čiginas, Approximations to Distributions of Linear Combinations of Order Statistics in Finite Populations, PhD dissertation, Vilnius University, Lithuania, 2011.

  11. A. Čiginas, An Edgeworth expansion for finite-population L-statistics, Lith. Math. J., 52(1):40–52, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Čiginas, Second-order approximations of finite population L-statistics, Statistics, 47(5):954–965, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Čiginas, On the asymptotic normality of finite population L-statistics, Stat. Pap., 55(4):1047–1058, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Čiginas and D. Pumputis, Calibrated Edgeworth expansions of finite population L-statistics, Math. Popul. Stud., 2019, available from: https://doi.org/10.1080/08898480.2018.1553408.

  15. W. Dai and J. Robinson, Empirical saddlepoint approximations of the Studentized mean under simple random sampling, Stat. Probab. Lett., 53(3):331–337, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.C. Deville and C.-E. Särndal, Calibration estimators in survey sampling, J. Am. Stat. Assoc., 87(418):376–382, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.S. Easton and E. Ronchetti, General saddlepoint approximations with applications to L statistics, J. Am. Stat. Assoc., 81(394):420–430, 1986.

    MathSciNet  MATH  Google Scholar 

  18. C. Field, Small sample asymptotic expansions for multivariateM-estimates, Ann. Stat., 10(3):672–689, 1982.

    Article  MATH  Google Scholar 

  19. N.V. Gribkova and R. Helmers, The empirical Edgeworth expansion for a Studentized trimmedmean, Math.Methods Stat., 15(1):61–87, 2006.

    Google Scholar 

  20. N.V. Gribkova and R. Helmers, On the Edgeworth expansion and theM out ofN bootstrap accuracy for a Studentized trimmed mean, Math. Methods Stat., 16(2):142–176, 2007.

    Article  MATH  Google Scholar 

  21. P. Hall and A.R. Padmanabhan, On the bootstrap and the trimmed mean, J. Multivariate Anal., 41(1):132–153, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Hall and B. La Scala, Methodology and algorithms of empirical likelihood, Int. Stat. Rev., 58(2):109–127, 1990.

    Article  MATH  Google Scholar 

  23. R. Helmers, On the Edgeworth expansion and the bootstrap approximation for a Studentized U-statistic, Ann. Stat., 19(1):470–484, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Helmers, B.-Y. Jing, G. Qin, and W. Zhou, Saddlepoint approximations to the trimmed mean, Bernoulli, 10(3): 465–501, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Hinkley and E. Schechtman, Conditional bootstrap methods in the mean-shift model, Biometrika, 74(1):85–93, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Maesono, An Edgeworth expansion and a normalizing transformation for L-statistics, Bull. Inf. Cybern., 39:25–43, 2007.

    MathSciNet  MATH  Google Scholar 

  27. A. Owen, Empirical likelihood ratio confidence regions, Ann. Stat., 18(1):90–120, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Pumputis and A. Čiginas, Estimation of parameters of finite population L-statistics, Nonlinear Anal. Model. Control, 18(3):327–343, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Putter and W.R. van Zwet, Empirical Edgeworth expansions for symmetric statistics, Ann. Stat., 26(4):1540–1569, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  30. R.R. Sitter and C. Wu, Efficient estimation of quadratic finite population functions in the presence of auxiliary information, J. Am. Stat. Assoc., 97(458):535–543, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Zhang, Bootstrapping with auxiliary information, Can. J. Stat., 27(2):237–249, 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrius Čiginas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čiginas, A., Pumputis, D. Calibrated bootstrap and saddlepoint approximations of finite population L-statistics. Lith Math J 59, 305–316 (2019). https://doi.org/10.1007/s10986-019-09446-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09446-9

MSC

Keywords

Navigation