Lithuanian Mathematical Journal

, Volume 58, Issue 2, pp 212–218 | Cite as

The second Hankel determinant for alpha-convex functions



Let S denote the class of analytic univalent functions in 𝔻:= {z ϵ ℂ: |z| < 1} normalized so that \( f(z)=z+{\sum}_{n=2}^{\infty }{a}_n{z}^n. \) Let C and S be the subclasses of S consisting of convex and starlike functions, respectively. For real α, the class M α of alpha-convex functions f ∈ S defined by

\( \operatorname{Re}\left\{\left(1-a\right)\frac{zf^{\hbox{'}}(z)}{f(z)}+a\left(\frac{zf^{\hbox{'}\hbox{'}}(z)}{f^{\hbox{'}}(z)}+1\right)\right\}>0, \) z ϵ 𝔻,

is well known, so thatM1 = C andM0 = S * . We give bounds for the second Hankel determinant \( {H}_2(2)=\left|{a}_2{a}_4-{a}_3^2\right| \) when f ∈ M α and α ≥ 0, thus extending the well-known results in the cases α = 0 and α = 1. We also give bounds for a wider class of functions.


univalent functions starlike function convex function alpha-convex function Hankel determinant 


30C45 30C55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko, and Y.J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. (2), 41(1):523–535, 2018.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V.K. Deekonda and R. Thoutreddy, An upper bound to the second Hankel determinant for functions in Mocanu class, Vietnam J. Math., 43(3):541–549, 2015.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. Janteng, S.A. Halim, and M. Darus, Coefficient inequality for function whose derivative has a positive real part, JIPAM, J. Inequal. in Pure Appl. Math., 7(2):50, 2006.MathSciNetMATHGoogle Scholar
  4. 4.
    A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(1):619–625, 2007.MathSciNetMATHGoogle Scholar
  5. 5.
    D.V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J., 5(1):65–76, 2012.MathSciNetMATHGoogle Scholar
  6. 6.
    P.K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Am. Math. Soc., 80(2):341–342, 1974.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S.K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013:281, 2013.MathSciNetMATHGoogle Scholar
  8. 8.
    R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., 85(2):225–230, 1982.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M.-S. Liu, J.-F. Xu, and M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal., 2014:603180, 2014.MathSciNetGoogle Scholar
  10. 10.
    A.K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci., 2008:153280, 2008.MathSciNetMATHGoogle Scholar
  11. 11.
    P.T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica, Cluj, 11(34):127–133, 1969.MathSciNetMATHGoogle Scholar
  12. 12.
    J.W. Noonan and D.K. Thomas, On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., 25:503–524, 1972.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41:111–122, 1966.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14:108–112, 1967.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    D. Raducanu and P. Zaprawa, Second Hankel determinant for the close-to-convex functions, C. R., Math., Acad. Sci. Paris, 355(10):1063–1071, 2017.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Shanmugam, B.A. Stephen, and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring International Journal of Data Mining, 2(2):57–60, 2012.CrossRefGoogle Scholar
  17. 17.
    G. Shanmugan and B.A. Stephen, Second Hankel determinant for alpha starlike functions, Int. J. Math. Sci. Eng. Appl., 6(5):159–163, 2012.MathSciNetGoogle Scholar
  18. 18.
    G. Singh, Hankel determinant for a new subclass of analytic functions, Sci. Magna, 8(4):61–65, 2012.Google Scholar
  19. 19.
    G. Singh and S. Mehrok, Hankel determinant for analytic functions with respect to other points, Engineering Mathematics Letters, 2(2):115–123, 2013.Google Scholar
  20. 20.
    P. Zaprawa, Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., 2016:3792367, 2016.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland
  2. 2.Department of MathematicsSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations