Skip to main content
Log in

Random sums of random variables and vectors: Including infinite means and unequal length sums

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let {X, X i , i = 1, 2, …} be independent nonnegative random variables with common distribution function F(x), and let N be an integer-valued random variable independent of X. Using S 0 = 0 and S n = S n−1 + X the random sum S N has the distribution function G(x) = ∑ i = 0 P(N = i) P(S i x) and tail distribution \( \overline{G}(x)=1-G(x) \). Under suitable conditions, it can be proved That \( \overline{G}(x)\sim \mathrm{E}(N)\overline{\mathrm{F}}(x)\;\mathrm{a}\mathrm{s}\;x\to \infty \). In this paper, we extend previous results to obtain general bounds and asymptotic bounds and equalities for random sums where the components can be independent with infinite mean, regularly varying with index 1 or O-regularly varying. In the multivariate case, we obtain asymptotic equalities for multivariate sums with unequal numbers of terms in each dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Ali, N.N. Mikhail, and M.S. Haq, A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., 8:405–412, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Baltrūnas, E. Omey, and S. Van Gulck, Hazard rates and subexponential distributions, Publ. Inst. Math., Nouv. Sér., 80(94):29–46, 2006.

    Article  Google Scholar 

  3. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation. Encyclopedia ofMathematics and Its Applications, Cambridge Univ. Press, Cambridge, 1987.

  4. V.P. Chistyakov, A theorem on sums of independent positive random variables and its application to branching random processes, Theory Probab. Appl., 9:640–648, 1964.

    Article  Google Scholar 

  5. J. Chover, P. Ney, and S. Wainger, Functions of probability measures, J. Anal. Math., 26:255–302, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.B.H. Cline, Convolutions of distributions with exponential and subexponential tails, J. Aust. Math. Soc., Ser. A, 43:347–365, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. D.A. Conway, Farlie–Gumbel–Morgenstern distributions, in S. Kotz and N.L. Johnson (Eds.), Encyclopedia of Statistical Sciences, Vol. 3, JohnWiley & Sons, New York, 1979, pp. 28–31.

    Google Scholar 

  8. C.M. Cuadras and J. Augé, A continuous general multivariate distribution and its properties, Commun. Stat., Theory Methods, 10(4):339–353, 1981.

    Article  Google Scholar 

  9. D.J. Daley, E. Omey, and R. Vesilo, The tail behaviour of a random sum of subexponential random variables and vectors, Extremes, 10:21–39, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Embrechts, C.M. Goldie, and N. Veraverbeke, Subexponentiality and infinite divisibility, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49:335–347, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997.

    Book  MATH  Google Scholar 

  12. G. Faÿ, B. González-Arévalo, T. Mikosch, and G. Samorodnitsky, Modeling teletraffic arrivals by a Poisson cluster process, Queueing Syst., 54:121–140, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions, Vol. 38, Springer, New York, 2011.

    MATH  Google Scholar 

  14. J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tracts, Vol. 40, Centre for Mathematics and Computer Science, Amsterdam, 1987.

    Google Scholar 

  15. L. de Haan and E. Omey, Integrals and derivatives of regularly varying functions in Rd and domains of attraction of stable distributions II, Stochastic Processes Appl., 16:157–170, 1983.

    Article  MATH  Google Scholar 

  16. G. Léveillé, Bivariate compound renewal sums with discounted claims, Eur. Actuar. J., 2:273–288, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Maejima, A generalization of Blackwell’s theorem for renewal processes to the case of non-identically distributed random variables, Rep. Stat. Appl. Res., Un. Jap. Sci. Eng., 19:1–9, 1972.

    MathSciNet  Google Scholar 

  18. F. Mallor and E. Omey, Univariate and Multivariate Weighted Renewal Theory, Collection of Monographs from the Department of Statistics and Operations Research, No. 2, Public University of Navarre, Spain, 2006.

  19. F. Mallor, E. Omey, and J. Santos, Multivariate subexponential distributions and random sums of random vectors, Adv. Appl. Probab., 38(4):1028–1046, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. K.V. Mardia, Families of Bivariate Distributions, Griffin, London, 1965.

    Google Scholar 

  21. E. Omey, Multivariate Reguliere Variatie en Toepassingen in Kanstheorie, PhD thesis, KU Leuven, 1982 (in Dutch).

  22. E. Omey, Random sums of random vectors, Publ. Inst. Math., Nouv. Sér., 48(62):191–198, 1990.

    MathSciNet  Google Scholar 

  23. E. Omey, Subexponential distributions in d, Journal of Mathematical Sciences. Proceedings of the Seminar on Stability Problems for Stochastic Models, Pamplona, Spain, 2003, Part III, 138(1):5434–5449, 2006.

  24. E. Omey and J.L. Teugels, Weighted renewal functions: A hierarchical approach, Adv. Appl. Probab., 34:394–415, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.W. Pratt, On interchanging limits and integrals, Ann. Math. Stat., 31:74–77, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  26. S.I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York, 1987.

    Book  MATH  Google Scholar 

  27. W. Schucany, Parr W., and J. Boyer, Correlation structure in Farlie–Gumbel–Morgenstern distributions, Biometrica, 65:650–653, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Seneta, Regularly Varying Functions, Lect. Notes Math., Vol. 508, Springer, New York, 1976.

  29. V.V. Shneer, Estimates for the distributions of the sums of subexponential random variables, Sib. Math. J., 45(6):1143–1158, 2004.

    Article  MathSciNet  Google Scholar 

  30. A. Skučaitė, Large deviations for sums of independent heavy-tailed random variables, Lith. Math. J., 44(2):198–208, 2004.

    Article  MATH  Google Scholar 

  31. A. Stam, Regular variation of the tail of a subordinated probability distribution, Adv. Appl. Probab., 5:308–327, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  32. J.L. Teugels, The class of subexponential distributions, Ann. Probab., 3:1000–1011, 1975.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Omey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omey, E., Vesilo, R. Random sums of random variables and vectors: Including infinite means and unequal length sums. Lith Math J 55, 433–450 (2015). https://doi.org/10.1007/s10986-015-9290-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-015-9290-z

MSC

Keywords

Navigation