Skip to main content
Log in

Gaussian limits of empirical multiparameter K-functions of homogeneous Poisson processes and tests for complete spatial randomness

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove two functional limit theorems for empirical multiparameter second moment functions (generalizing Ripley’s K-function) obtained from a homogeneous Poisson point field observed in an unboundedly expanding convex sampling window W n in ℝd. The cases of known and unknown (estimated) intensity lead to distinct Gaussian limits and require quite different proofs. Further we determine the limit distributions of the maximal deviation and the integrated squared distance between empirical and true multiparameter second moment function. These results give rise to construct goodness-of-fit tests for checking the hypothesis that a given point pattern is completely spatially random (CSR), that is, a realization of a homogeneous Poisson process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Adler, The Geometry of Random Fields, Wiley, Chichester, 1980.

    Google Scholar 

  2. R.J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lect. Notes, Monogr. Ser., Vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990.

  3. P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications, Ann. Math. Stat., 42:1656–1670, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley, Chichester, 1999.

    Book  MATH  Google Scholar 

  5. E. Bolthausen, On the CLT for stationary mixing random fields, Ann. Probab., 10:1047–1050, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  6. A.G. Chedwynd and P.J. Diggle, On estimating the reduced second moment measure of a stationary spatial point process, Aust. N. Z. J. Stat., 40:11–15, 1998.

    Article  MathSciNet  Google Scholar 

  7. L.H. Chen and Q.-M. Shao, Normal approximation under local dependence, Ann. Probab., 32(3A):1985–2028, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke, Stochastic Geometry and its Applications, 3rd ed., Wiley, Chichester, 2013.

    Book  MATH  Google Scholar 

  9. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2nd ed., Springer, New York, 2003.

    Google Scholar 

  10. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed., Springer, New York, 2008.

    Book  Google Scholar 

  11. P. Deheuvels, G. Peccati, and M. Yor, On quadratic functionals of the Brownian sheet and related processes, Stochastic Processes Appl., 116:493–538, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  12. P.J. Diggle, Statistical Analysis of Spatial Point Patterns, 2nd ed., Arnold, London, 2003.

    MATH  Google Scholar 

  13. P. Grabarnik and S.N. Chiu, Goodness-of-fit test for complete spatial randomness against mixtures of regular and clustered spatial point processes, Biometrika, 89:411–421, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Heinrich, Asymptotic normality of a point field characteristic in R d, Statistics, 17:453–460, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Heinrich, Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes, Statistics, 19:87–106, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Heinrich, Goodness-of-fit tests for the second moment function of a stationary multidimensional Poisson process, Statistics, 22:245–268, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Heinrich, Asymptotic methods in statistics of random point processes, in E. Spodarev (Ed.), Stochastic Geometry, Spatial Statistics and Random Fields, Lect. Notes Math., Vol. 2068, Springer, New York, 2013, pp. 115–150.

  18. L. Heinrich, Asymptotic goodness-of-fit tests for stationary point processes based on scaled empirical K-functions, 2014 (submitted for publication).

  19. L. Heinrich, S. Lück, and V. Schmidt, Asymptotic goodness-of-fit tests for the Palm mark distribution of stationary point processes with correlated marks, Bernoulli, 20:1673–1697, 2014. (See also arXiv:1205.5044v1 [math. ST].)

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Heinrich and Z. Pawlas, Weak and strong convergence of empirical distribution functions from germ-grain processes, Statistics, 42:49–65, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  21. L.P. Ho and S.N. Chiu, Testing the complete spatial randomness by Diggle’s test without an arbitrary upper limit, J. Stat. Comput. Simulation, 76:585–591, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Illian, A. Penttinen, D. Stoyan, and H. Stoyan, Statistical Analysis and Modelling of Spatial Point Processes, Wiley, Chichester, 2008.

    Google Scholar 

  23. S.R. Jammalamadaka and S. Janson, Limit theorems for a triangular scheme of U-statistics with applications to interpoint distances, Ann. Probab., 14:1347–1358, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Jolivet, CLT and convergence of empirical processes for stationary point processes, in P. Bartfai and J. Tomko (Eds.), Point Processes and Queuing Problems, Colloq. Math. Soc. János Bolyai, No. 24, North-Holland, Amsterdam, 1980, pp. 117–161.

  25. A.F. Karr, Point Processes and Their Statistical Inference, Marcel Dekker, New York, 1986.

    MATH  Google Scholar 

  26. K. Kiêu and M. Mora, Estimating the reduced moments of a random measure, Adv. Appl. Probab., 31:48–62, 1999.

    Article  MATH  Google Scholar 

  27. E.N. Krivyakov, G. V. Martynov, and Yu. N. Tyurin, On the distribution of the ω 2-statistics in the multi-dimensional case, Theory Probab. Appl., 22:406 – 410, 1978.

    Article  Google Scholar 

  28. G. Last, M.D. Penrose, M. Schulte, and C. Thäle, Moments and CLT’s for some multivariate Poisson functionals, Adv. Appl. Probab., 46:348–364, 2014.

    Article  MATH  Google Scholar 

  29. G.V. Martynov, Omega-Square Criteria, Nauka, Moscow, 1978 (in Russian).

    Google Scholar 

  30. G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat., 42:1285–1295, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Ohser and D. Stoyan, On the second-order and orientation analysis of planar stationary point processes, Biom. J., 23:523–533, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Reitzner and M. Schulte, CLT’s for U-statistics of Poisson point processes, Ann. Probab., 41:3879–3909, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  33. B.D. Ripley, The second-order analysis of stationary point processes, J. Appl. Probab., 13:255–266, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  34. R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980.

    Book  MATH  Google Scholar 

  35. M. Stein, Asymptotically optimal estimation for the reduced second moment measure of point processes, Biometrika, 80:443–449, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Stoyan and H. Stoyan, Improving ratio estimators of second-order point process characteristics, Scand. J. Stat., 27:641–656, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  37. D.L. Zimmerman, A bivariate Cramér–von Mises type of test for spatial randomness, Appl. Stat., 42:43–54, 1993.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Heinrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, L. Gaussian limits of empirical multiparameter K-functions of homogeneous Poisson processes and tests for complete spatial randomness. Lith Math J 55, 72–90 (2015). https://doi.org/10.1007/s10986-015-9266-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-015-9266-z

Keywords

MSC

Navigation