Skip to main content
Log in

Quotients of cliquish functions on some interval or on no interval

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study cardinal invariants connected with quotients in the case of functions that are constant, continuous, quasi-continuous, and cliquish on some interval or on no interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A.K. Peters, Wellesley, MA, 1995.

    MATH  Google Scholar 

  2. K. Ciesielski, Set-theoretic real analysis, J. Appl. Anal., 3(2):143–190, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Ciesielski and T. Natkaniec, Algebraic properties of the class of Sierpiński–Zygmund functions, Topology Appl., 79(1):75–99, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Ciesielski and I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exch., 21(2):459–472, 1995–1996.

  5. H. Fast, Une remarque sur la propriete de Weierstrass, Colloq. Math., 7:75–77, 1959.

    MATH  MathSciNet  Google Scholar 

  6. Z. Grande, Sur la quasi-continuite et la quasi-continuite approximative, Fundam. Math., 129:167–172, 1988.

    MATH  MathSciNet  Google Scholar 

  7. Z. Grande and T. Natkaniec, Lattices generated by T -quasi-continuous functions, Bull. Pol. Acad. Sci., Math., 34:525–530, 1986.

    MATH  MathSciNet  Google Scholar 

  8. J. Jałocha, Quotients of quasi-continuous functions, J. App. Anal., 6(2):251–258, 2000.

    MATH  Google Scholar 

  9. F. Jordan, Cardinal invariants connected with adding real functions, Real Anal. Exch., 22(2):696–713, 1996–1997.

  10. K.R. Kellum, Sums and limits of almost continuous functions, Colloq. Math., 31:125–128, 1974.

    MATH  MathSciNet  Google Scholar 

  11. S. Kempisty, Sur les fonctions quasicontinues, Fundam. Math., 19:184–197, 1932.

    Google Scholar 

  12. J. Kosman, Quotients of peripherally continuous functions, Cent. Eur. J. Math., 9(4):765–771, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Kosman, Cardinal invariants concerning closed graph functions, Demonstr. Math., 45(4):813–819, 2012.

    MATH  MathSciNet  Google Scholar 

  14. J. Kosman, Cardinal invariants connected with quotients of real functions, Annals of the Alexandru Ioan Cusa University – Mathematics, 2014 (forthcomming).

  15. A. Lindenbaum, Sur quelques proprietes des fonctions de variable reelle, Ann. Soc. Math. Pol., 6:129–130, 1927.

    Google Scholar 

  16. T. Natkaniec, Almost continuity, Real Anal. Exch., 17(2):462–520, 1991–1992.

  17. A. Neubrunnova, On certain generalizations of the notion of continuity, Mat. Čas., Slovensk. Akad. Vied, 23(4):374–380, 1973.

    MATH  MathSciNet  Google Scholar 

  18. M.E. Rudin, Martin’s axiom, in J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 491–501.

    Chapter  Google Scholar 

  19. H.P. Thielman, Types of functions, Am. Math. Monthly, 60(3):156–161, 1953.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kosman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosman, J. Quotients of cliquish functions on some interval or on no interval. Lith Math J 54, 447–453 (2014). https://doi.org/10.1007/s10986-014-9255-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-014-9255-7

Keywords

Navigation