Skip to main content
Log in

The asymptotic number of integral cubic polynomials with bounded heights and discriminants

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let P denote a cubic integral polynomial, and let D(P) and H(P) denote the discriminant and height of P, respectively. Let N(Q,X) be the number of cubic integral polynomials P such that H(P) ≤ Q and |D(P)| ≤ X. We obtain an asymptotic formula of N(Q,X) for Q 14/5XQ 4 and Q → +. Using this result, for 0 ≤ η ≤ 9/10, we find the asymptotic value of

$$ \sum\limits_{{\begin{array}{*{20}{c}} {H(P)\leq Q} \\ {1\leq \left| {D(P)} \right|\ll {Q^{{4-\eta }}}} \\ \end{array}}} {{{{\left| {D(P)} \right|}}^{{-{1 \left/ {2} \right.}}}}}, $$

where the sum is taken over irreducible integral polynomials and Q → +. This improves upon a result of Davenport, who dealt with the case η = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baker and W.M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. (3), 21:1–11, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Beresnevich, Rational points near manifolds and metric Diophantine approximation, Ann. Math. (2), 175(1):187–235, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Beresnevich, V. Bernik, and F. Götze, The distribution of close conjugate algebraic numbers, Compos. Math., 146(5):1165–1179, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Beresnevich, V. Bernik, and F. Götze, Simultaneous approximations of zero by an integral polynomial, its derivative and small values of discriminants, Dokl. Nats. Akad. Nauk Belarusi, 54(2):26–28, 2010 (in Russian).

    MATH  MathSciNet  Google Scholar 

  5. V.I. Bernik, Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith., 42(3):219–253, 1983 (in Russian).

    MATH  MathSciNet  Google Scholar 

  6. V. Bernik, F. Götze, and O. Kukso, Lower bounds for the number of integral polynomials with given order of discriminants, Acta Arith., 133(4):375–390, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Bernik, F. Götze, and O. Kukso, On the divisibility of the discriminant of an integral polynomial by prime powers, Lith. Math. J., 48(4):380–396, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Bugeaud and M. Mignotte, On the distance between roots of integer polynomials, Proc. Edinb. Math. Soc., II. Ser., 47(3):553–556, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Bugeaud and M. Mignotte, Polynomial root separation, Int. J. Number Theory, 6(3):587–602, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Davenport, On a principle of Lipschitz, J. London Math. Soc., 26:179–183, 1951. Corrigendum: J. London Math. Soc., 39:580, 1964.

  11. H. Davenport, On the class-number of binary cubic forms (I), J. London Math. Soc., 26:183–192, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Davenport, On the class-number of binary cubic forms (II), J. London Math. Soc., 26:192–198, 1951.

    Article  MathSciNet  Google Scholar 

  13. H. Davenport, A note on binary cubic forms, Mathematika, 8:58–62, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.-H. Evertse, Distances between the conjugates of an algebraic number, Publ. Math., 65(3–4):323–340, 2004.

    MATH  MathSciNet  Google Scholar 

  15. D. Kaliada, Distribution of real algebraic numbers of a given degree, Dokl. Nats. Akad. Nauk Belarusi, 56(3):28–33, 2012 (in Belarusian).

    Google Scholar 

  16. D. Koleda, An upper bound for the number of integral polynomials of third degree with a given bound for discriminants, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, 3:10–16, 2010 (in Russian).

    MathSciNet  Google Scholar 

  17. K. Mahler, Über das Maß der Menge aller S-Zahlen, Math. Ann., 106(1):131–139, 1932 (in German).

    Article  MathSciNet  Google Scholar 

  18. V.G. Sprindžuk, Mahler’s Problem in Metric Number Theory, Nauka i Tekhnika, Minsk, 1967 (in Russian). English transl.: Transl. Math. Monogr., Vol. 25, Amer. Math. Soc., Providence, RI, 1969.

  19. B.L. van der Waerden, Algebra, Springer-Verlag, Berlin, Heidelberg, 1971.

    MATH  Google Scholar 

  20. B. Volkmann, The real cubic case of Mahler’s conjecture, Mathematika, 8:55–57, 1961.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzianis Kaliada.

Additional information

Dzianis Kaliada and Olga Kukso would like to thank the University of Bielefeld, where a substantial part of this work was done, for providing a stimulating research environment during his visit supported by SFB 701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliada, D., Götze, F. & Kukso, O. The asymptotic number of integral cubic polynomials with bounded heights and discriminants. Lith Math J 54, 150–165 (2014). https://doi.org/10.1007/s10986-014-9234-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-014-9234-z

MSC

Keywords

Navigation