Skip to main content
Log in

Limit-periodic arithmetical functions and the ring of finite integral adeles

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper, we show that the ring of finite integral adeles, together with its Borel field and its normalized Haar measure, is an appropriate probability space where limit-periodic arithmetical functions can be extended to random variables. The natural extensions of additive and multiplicative functions are studied. Besides, the convergence of Fourier expansions of limit-periodic functions is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Brown and W. Moran, Products of random variables and Kakutani’s criterion for orthogonality of product measures, J. London Math. Soc. (2), 10:401–405, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.L. Doob, Stochastic Processes, John Wiley & Sons, Inc./Chapman & Hall, Limited, New York/London, 1953.

    MATH  Google Scholar 

  3. T.K. Duy, On the distribution of k-th power free integers, Osaka J. Math., 48(4), 2011.

  4. K.-H. Indlekofer, New approach to probabilistic number theory—compactifications and integration, in S. Akiyama, K. Matsumoto, L. Murata, and H. Sugita (Eds.), Probability and Number Theory—Kanazawa 2005, Adv. Stud. Pure Math., Vol. 49, Math. Soc. Japan, Tokyo, 2007, pp. 133–170.

    Google Scholar 

  5. Y. Katznelson, An Introduction to Harmonic Analysis, 3 rd edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2004.

    MATH  Google Scholar 

  6. J. Knopfmacher, Fourier analysis of arithmetical functions, Ann. Mat. Pura Appl. (4), 109:177–201, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Kryžius, Limit-periodic arithmetical functions, Litov. Mat. Sb., 25(3):93–103, 1985 (in Russian). English transl.: Lith. Math. J., 25(3):243–250, 1985.

    Article  MATH  Google Scholar 

  8. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure Appl. Math., Wiley-Interscience (John Wiley & Sons), New York, London, Sydney, 1974.

    Google Scholar 

  9. J.-L. Mauclaire, Suites limite-periodiques et theorie des nombres. I, Proc. Japan Acad., Ser. A, 56(4):180–182, 1980.

    Article  MathSciNet  Google Scholar 

  10. J.-L. Mauclaire, Intégration et théorie des nombres, Trav. Cours., Hermann, Paris, 1986.

    MATH  Google Scholar 

  11. E.V. Novoselov, A new method in probabilistic number theory, Izv. Akad. Nauk SSSR, Ser. Mat., 28:307–364, 1964. English transl.: Am. Math. Soc. Transl., 52:217–275, 1966.

    MATH  Google Scholar 

  12. W. Schwarz and J. Spilker, Arithmetical Functions. An Introduction to Elementary and Analytic Properties of Arithmetic Functions and to Some of Their Almost-Periodic Properties, London Math. Soc. Lect. Note Ser., Vol. 184, Cambridge Univ. Press, Cambridge, 1994.

    MATH  Google Scholar 

  13. H. Sugita and S. Takanobu, The probability of two integers to be co-prime, revisited—on the behavior of CLT-scaling limit, Osaka J. Math., 40(4):945–976, 2003.

    MathSciNet  MATH  Google Scholar 

  14. P. Walters, An Introduction to Ergodic Theory, Grad. Texts Math., Vol. 79, Springer-Verlag, New York, Berlin, 1982.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Khanh Duy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duy, T.K. Limit-periodic arithmetical functions and the ring of finite integral adeles. Lith Math J 51, 486–506 (2011). https://doi.org/10.1007/s10986-011-9143-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-011-9143-3

Keywords

MSC

Navigation