Skip to main content
Log in

Self-similarity and Lamperti convergence for families of stochastic processes

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to certain important families of processes that are not self-similar in the conventional sense. This includes Hougaard Lévy processes such as the Poisson processes, Brownian motions with drift and the inverse Gaussian processes, and some new fractional Hougaard motions defined as moving averages of Hougaard Lévy process. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.E. Barndorff-Nielsen and J. Schmiegel, Time change, volatility and turbulence, in A. Sarychev, M. Guerra A. Shiryaev, and M. do R. Grossinho (Eds.), Mathematical Control Theory and Finance, Springer, Berlin, 2008, pp. 29–53.

    Chapter  Google Scholar 

  2. O.E. Barndorff-Nielsen and S. Thorbjørnsen, Classical and free infinite divisibility and Lévy processes, in M. Schüermann and U. Franz (Eds.), Quantum Independent Increment Processes II, Lect. Notes Math., Vol. 1866, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 33–159.

    Chapter  Google Scholar 

  3. J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, London, 1994.

    MATH  Google Scholar 

  4. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.

    MATH  Google Scholar 

  5. P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton Univ. Press, Princeton, NJ, 2002.

    MATH  Google Scholar 

  6. P. Hougaard, M.-L.T. Lee, and G.A. Whitmore, Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics, 53:1225–1238, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Jona-Lasinio, The renormalization group: A probabilistic view, Nuovo Cimento, 26:99–119, 1975.

    Article  MathSciNet  Google Scholar 

  8. B. Jørgensen, Exponential dispersion models and extensions: A review, Int. Stat. Rev., 60:5–20, 1992.

    Article  Google Scholar 

  9. B. Jørgensen, The Theory of Dispersion Models, Chapman & Hall, London, 1997.

    Google Scholar 

  10. B. Jørgensen and J.R. Martínez, The Lévy–Khinchine representation of the Tweedie family, Braz. J. Probab. Stat., 10:225–233, 1996.

    Google Scholar 

  11. U. Küchler and M. Sørensen, Exponential Families of Stochastic Processes, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  12. J. Lamperti, Semi-stable stochastic processes, Trans. Am. Math. Soc., 104:62–78, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.-L.T. Lee and G.A. Whitmore, Stochastic processes directed by randomized time, J. Appl. Probab., 30:302–314, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  14. B.B. Mandelbrot and J.W. van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10:422–437, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes, Bernoulli, 12:1099–1126, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Rajput and J. Rosiński, Spectral representation of infinitely divisible processes, Probab. Theory Relat. Fields, 82:451–487, 1989.

    Article  MATH  Google Scholar 

  17. M.S. Taqqu, Fractional Brownian motion and long-range dependence, in P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, pp. 5–38.

    Google Scholar 

  18. V. Vinogradov, Properties of certain Lévy and geometric Lévy processes, Commun. Stoch. Anal., 2:193–208, 2008.

    MathSciNet  Google Scholar 

  19. M.T. Wasan, On an inverse Gaussian process, Skand. Aktuarietidskr., 51:69–96, 1968.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bent Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, B., Martínez, J.R. & Demétrio, C.G. Self-similarity and Lamperti convergence for families of stochastic processes. Lith Math J 51, 342–361 (2011). https://doi.org/10.1007/s10986-011-9131-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-011-9131-7

Keywords

Navigation