Skip to main content
Log in

PRV property and the ϕ-asymptotic behavior of solutions of stochastic differential equations

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper, we investigate the a.s. asymptotic behavior of the solution of the stochastic differential equation dX(t) = g(X(t)) dt + σ(X(t))dW(t), X(0) ≢ 1, where g(·) and σ(·) are positive continuous functions, and W(·) is a standard Wiener process. By means of the theory of PRV functions we find conditions on g(·), σ(·), and ϕ(·) under which ϕ(X(·)) may be approximated a.s. by ϕ(μ(·)) on {X(t) → ∞}, where μ(·) is the solution of the ordinary differential equation dμ(t) = g(μ(t)) dt with μ(0) = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Avakumovic, Über einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci., 29–30, 107–117 (1936).

    Google Scholar 

  2. S. M. Berman, Sojourns and extremes of a diffusion process on a fixed interval, Adv. Appl. Prob., 14, 811–832 (1982).

    Article  MATH  Google Scholar 

  3. S. M. Berman, The tail of the convolution of densities and its application to a model of HIV-latency time, Ann. Appl. Prob., 2, 481–502 (1992).

    Article  MATH  Google Scholar 

  4. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge (1987).

    MATH  Google Scholar 

  5. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukrain. Math. J., 54, 179–206 (2002).

    Article  MathSciNet  Google Scholar 

  6. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some properties of asymptotically quasi-inverse functions and their applications I, Teor. Imov. Mat. Stat., 70, 9–25 (2004) (in Ukrainian); English transl. Theory Probab. Math. Statist., 70, 11–28 (2005).

    Google Scholar 

  7. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some properties of asymptotic quasi-inverse functions and their applications II, Theory Probab. Math. Statist., 71, 37–52 (2005).

    Article  MathSciNet  Google Scholar 

  8. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, The PRV property of functions and the asymptotically behavior of solutions of stochastic differential equations, Theory Probab. Math. Statist., 72, 11–25 (2006).

    Article  MathSciNet  Google Scholar 

  9. D. B. H. Cline, Intermediate regular and Π-variation, Proc. London Math. Soc., 68, 594–616 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Djurčić, O-regularly varying functions and strong asymptotic equivalence, J. Math. Anal. Appl., 220, 451–461 (1998).

    Article  MathSciNet  Google Scholar 

  11. D. Djurčić and A. Torgašev, Srong asymptotic equivalence and inversion of functions in the class K c , J. Math. Anal. Appl., 255, 383–390 (2001).

    Article  MathSciNet  Google Scholar 

  12. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin (1972).

    MATH  Google Scholar 

  13. J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 4, 38–53 (1930).

    Google Scholar 

  14. J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn Avakumović, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci., 29–30, 117–123 (1936).

    Google Scholar 

  15. G. Keller, G. Kersting, and U. Rösler, On the asymptotic behaviour of solutions of stochastic differential equations, Z. Wahrsch. verw. Geb., 68, 163–184 (1984).

    Article  MATH  Google Scholar 

  16. O. Klesov, Z. Rychlik, and J. Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Stat., 21, 329–349 (2001).

    MATH  MathSciNet  Google Scholar 

  17. B. H. Korenblyum, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk SSSR (N.S.), 109, 173–176 (1956).

    Google Scholar 

  18. W. Matuszewska, On a generalization of regularly increasing functions, Studia Math., 24, 271–279 (1964).

    MATH  MathSciNet  Google Scholar 

  19. W. Matuszewska and W. Orlicz, On some classes of functions with regard to their orders of growth, Studia Math., 26, 11–24 (1965).

    MATH  MathSciNet  Google Scholar 

  20. S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc., 100, 217–240 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin (1976).

    MATH  Google Scholar 

  22. U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math., 311/312, 283–290 (1979).

    Google Scholar 

  23. A. L. Yakymiv, Asymptotic properties of state change points in a random record process, Theory Probab. Appl., 31(3), 508–512 (1987).

    Article  MATH  Google Scholar 

  24. A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes, Proc. Steklov Inst. Math., 4, 189–217 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Buldygin.

Additional information

Published in Lietuvos Matematikos Rinkinys, Vol. 47, No. 4, pp. 445–465, October–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buldygin, V.V., Klesov, O.I. & Steinebach, J.G. PRV property and the ϕ-asymptotic behavior of solutions of stochastic differential equations. Lith Math J 47, 361–378 (2007). https://doi.org/10.1007/s10986-007-0025-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-007-0025-7

Keywords

Navigation