Skip to main content
Log in

Asymptotic Independence of Distant Partial Sums of Linear Processes

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We investigate the joint weak convergence (f.d.d. and functional) of the vector-valued process (U (1)n (τ), U (2)n (τ)) for τ ∈ [0, 1], where \(U_n^{(1)} (\tau )\;: = \;A_n^{ - 1} \;\Sigma _{t = 1}^{[n\tau ]} \;X_t \) and \(U_n^{(2)} (\tau )\;: = \;A_n^{ - 1} \;\Sigma _{t = 1}^{[n\tau ]} \;X_{t + m} \) are normalized partial-sum processes separated by a large lag m, m/n → ∞, and (X t , t ∈ ℤ) is a stationary moving-average process with i.i.d. (or martingale-difference) innovations having finite variance. We consider the cases where (X t ) is a process with long memory, short memory, or negative memory. We show that, in all these cases, as n → ∞ and m/n → ∞, the bivariate partial-sum process (U (1)n (τ), U (2)n (τ)) tends to a bivariate fractional Brownian motion with independent components. The result is applied to prove the consistency of certain increment-type statistics in moving-average observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. S. Arkashov and I. S. Borisov, Gaussian approximation to the partial sum processes of moving averages, Siberian Math. J., 45(6), 1221–1255 (2004).

    Article  MathSciNet  Google Scholar 

  2. A. Astrauskas, Limit theorems for sums of linearly generated random variables, Lith. Math. J., 23(2), 127–134 (1983).

    MathSciNet  Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).

    Google Scholar 

  4. F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab., 15, 767–775 (1987).

    MathSciNet  Google Scholar 

  5. F. Avram and M. S. Taqqu, Weak convergence of sums of moving averages in the α-stable domain of attraction, Ann. Probab., 20, 483–503 (1992).

    MathSciNet  Google Scholar 

  6. Y. S. Chow and H. Teicher, Probability Theory, Springer, New York (1988).

    Google Scholar 

  7. Yu. A. Davydov, The invariance principle for stationary process, Theory Probab. Appl., 15, 487–498 (1970).

    Article  MathSciNet  Google Scholar 

  8. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York (1957).

    Google Scholar 

  9. L. Giraitis, R. Leipus, and A. Philippe, A test for stationarity versus trends and unit roots for a wide class of dependent errors, Econometric Theory (to appear).

  10. L. Giraitis and D. Surgailis, Limit theorem for polynomials of linear process with long-range dependence, Lith. Math. J., 29(2), 128–145 (1989).

    MathSciNet  Google Scholar 

  11. L. Giraitis and D. Surgailis, ARCH-type bilinear model with double long memory, Stoch. Proc. Appl., 100, 275–300 (2002).

    Article  MathSciNet  Google Scholar 

  12. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters Noordhoff, Groningen (1971).

    Google Scholar 

  13. Y. Kasahara and M. Maejima, Weighted sums of i.i.d. random variables attracted to integrals of stable processes, Probab. Theory Related Fields, 78, 75–96 (1988).

    Article  MathSciNet  Google Scholar 

  14. M. Peligrad and S. Utev, Central limit theorem for linear processes, Ann. Probab., 25(1), 443–456 (1997).

    MathSciNet  Google Scholar 

  15. D. Surgailis, Zones of attraction of self-similar multiple integrals, Lith. Math. J., 22(3), 327–340 (1982).

    MathSciNet  Google Scholar 

  16. D. Surgailis, Non CLTs: U-statistics, multinomial formula and approximations of multiple Ito-Wiener integrals, in: P. Doukhan et al. (Eds.), Long Range Dependence: Theory and Applications, Birkhauser, Boston (2003), pp. 129–142.

    Google Scholar 

  17. D. Surgailis and M. Vaiciulis, The Increament Ratio Statistics, Preprint.

  18. M. S. Taqqu, Fractional Brownian motion and long-range dependence, in: P. Doukhan et al. (Eds.), Long Range Dependence: Theory and Applications, Birkhauser, Boston (2003), pp. 5–38.

    Google Scholar 

  19. M. Vaiciulis, Convergence of sums of linear processes with long-range dependence and infinite variance, Lith. Math. J., 43(1), 67–82 (2003).

    MATH  MathSciNet  Google Scholar 

  20. Q. Wang, Y.-X. Lin, and Ch. M. Gulati, Asymptotics for moving average processes with dependent innovations, Statist. Probab. Lett., 54, 347–356 (2001).

    Article  MathSciNet  Google Scholar 

  21. W. B. Wu and W. Min, On linear processes with dependent innovations, Stoch. Proc. Appl. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work supported by the joint Lithuania-French research program Gilibert.

__________

Translated from Lietuvos Matematikos Rinkinys, Vol. 45, No. 4, pp. 479–500, October–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruzaite, K., Vaiciulis, M. Asymptotic Independence of Distant Partial Sums of Linear Processes. Lith Math J 45, 387–404 (2005). https://doi.org/10.1007/s10986-006-0003-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-006-0003-5

Keywords

Navigation