Ahmed SE, Hossain S, Doksum KA (2012) Lasso and shrinkage estimation in weibull censored regression models. J Stat Plan Inference 142(6):1273–1284
MathSciNet
MATH
Google Scholar
Barber RF, Candès EJ et al (2015) Controlling the false discovery rate via knockoffs. Annal Stat 43(5):2055–2085
MathSciNet
MATH
Google Scholar
Barbieri MM, Berger JO (2004) Optimal predictive model selection. Annal Stat 32(3):870–897
MathSciNet
MATH
Google Scholar
Buckley J, James I (1979) Linear regression with censored data. Biometrika 66(3):429–436
MATH
Google Scholar
Cai T, Huang J, Tian L (2009) Regularized estimation for the accelerated failure time model. Biometrics 65(2):394–404
MathSciNet
MATH
Google Scholar
Candès E, Fan Y, Janson L, Lv J (2018) Panning for gold: Model-free knockoffs for high-dimensional controlled variable selection. J R Stat Soc: Ser B (Stat Methodol) 80(3):551–577
MathSciNet
MATH
Google Scholar
Chang SH (2004) Estimating marginal effects in accelerated failure time models for serial sojourn times among repeated events. Lifetime Data Anal 10(2):175–190
MathSciNet
MATH
Google Scholar
Chatonnet F, Pignarre A, Sérandour AA, Caron G, Avner S, Robert N, Kassambara A, Laurent A, Bizot M, Agirre X et al (2020) The hydroxymethylome of multiple myeloma identifies fam72d as a 1q21 marker linked to proliferation. Haematologica 105(3):774–783
Google Scholar
Chiou SH, Kang S, Kim J, Yan J (2014) Marginal semiparametric multivariate accelerated failure time model with generalized estimating equations. Lifetime Data Anal 20(4):599–618
MathSciNet
MATH
Google Scholar
Cox DR (1972) Regression models and life-tables. J R Stat Soc: Ser B (Methodol) 34(2):187–202
MathSciNet
MATH
Google Scholar
Duan W, Zhang R, Zhao Y, Shen S, Wei Y, Chen F, Christiani DC (2018) Bayesian variable selection for parametric survival model with applications to cancer omics data. Human Genom 12(1):49
Google Scholar
George EI, McCulloch RE (1997) Approaches for bayesian variable selection. Stat Sinica 7(2):339–373
MATH
Google Scholar
Hanagal DD (2006) Bivariate weibull regression model based on censored samples. Stat Papers 47(1):137–147
MathSciNet
MATH
Google Scholar
Hawley TS, Riz I, Yang W, Wakabayashi Y, DePalma L, Chang YT, Peng W, Zhu J, Hawley RG (2013) Identification of an abcb1 (p-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye cdy1. Am J Hematol 88(4):265–272
Google Scholar
He W, Lawless JF (2005) Bivariate location-scale models for regression analysis, with applications to lifetime data. J R Stat Soc: Ser B (Stat Methodol) 67(1):63–78
MathSciNet
MATH
Google Scholar
Hornsteiner U, Hamerle A (1996) A combined gee/buckley-james method for estimating an accelerated failure time model of multivariate failure times. Discussion Paper 47, Ludwig-Maximillians Universitat, Munchen. Also available from http://stat.unimuenchen.de/sfb386/publikation.html
Hu J, Chai H (2013) Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates. J Multiv Anal 122:96–114
MathSciNet
MATH
Google Scholar
Huang J, Ma S (2010) Variable selection in the accelerated failure time model via the bridge method. Lifetime Data Anal 16(2):176–195
MathSciNet
MATH
Google Scholar
Huang J, Ma S, Xie H (2006) Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62(3):813–820
MathSciNet
MATH
Google Scholar
Huang J, Ma S, Xie H (2007) Least absolute deviations estimation for the accelerated failure time model. Stat Sinica 17(4):1533–1548
MathSciNet
MATH
Google Scholar
Huang J, Ma S, Xie H, Zhang CH (2009) A group bridge approach for variable selection. Biometrika 96(2):339–355
MathSciNet
MATH
Google Scholar
Huang L, Kopciuk K, Lu X (2020) Adaptive group bridge selection in the semiparametric accelerated failure time model. J Multiv Anal 175:104562
MathSciNet
MATH
Google Scholar
Huang Y (2002) Censored regression with the multistate accelerated sojourn times model. J R Stat Soc: Ser B (Stat Methodol) 64(1):17–29
MathSciNet
MATH
Google Scholar
Jin Z, Lin D, Wei L, Ying Z (2003) Rank-based inference for the accelerated failure time model. Biometrika 90(2):341–353
MathSciNet
MATH
Google Scholar
Jin Z, Lin D, Ying Z (2006) On least-squares regression with censored data. Biometrika 93(1):147–161
MathSciNet
MATH
Google Scholar
Jin Z, Lin D, Ying Z (2006) Rank regression analysis of multivariate failure time data based on marginal linear models. Scandinavian J Stat 33(1):1–23
MathSciNet
MATH
Google Scholar
Johnson BA et al (2009) On lasso for censored data. Electron J Stat 3:485–506
MathSciNet
MATH
Google Scholar
Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data. Wiley, New Jersey
MATH
Google Scholar
Khan MHR, Shaw JEH (2016) Variable selection for survival data with a class of adaptive elastic net techniques. Stat Comput 26(3):725–741
MathSciNet
MATH
Google Scholar
Khan MHR, Shaw JEH (2019) Variable selection for accelerated lifetime models with synthesized estimation techniques. Stat Methods Med Res 28(3):937–952
MathSciNet
Google Scholar
Khan MHR, Bhadra A, Howlader T (2019) Stability selection for lasso, ridge and elastic net implemented with aft models. Stat Appl Genet Mol Biol 18(5):742
MathSciNet
MATH
Google Scholar
Konrath S, Fahrmeir L, Kneib T (2015) Bayesian accelerated failure time models based on penalized mixtures of gaussians: regularization and variable selection. AStA Adv Stat Anal 99(3):259–280
MathSciNet
MATH
Google Scholar
Koul H, Vv Susarla, Van Ryzin J et al (1981) Regression analysis with randomly right-censored data. Annal Stat 9(6):1276–1288
MathSciNet
MATH
Google Scholar
Lee KE, Mallick BK (2004) Bayesian methods for variable selection in survival models with application to dna microarray data. Sankhyā: Ind J Stat 66(4):756–778
MathSciNet
MATH
Google Scholar
Lee KH, Chakraborty S, Sun J (2017) Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior. Comput Stat Data Anal 112:1–13
MathSciNet
MATH
Google Scholar
Li H, Yin G (2009) Generalized method of moments estimation for linear regression with clustered failure time data. Biometrika 96(2):293–306
MathSciNet
MATH
Google Scholar
Li Y, Dicker L, Zhao SD (2014) The dantzig selector for censored linear regression models. Stat Sinica 24(1):251
MathSciNet
MATH
Google Scholar
Lu W (2007) Tests of independence for censored bivariate failure time data. Lifetime Data Anal 13(1):75–90
MathSciNet
MATH
Google Scholar
Miller RG (1976) Least squares regression with censored data. Biometrika 63(3):449–464
MathSciNet
MATH
Google Scholar
Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Am Stat Assoc 83(404):1023–1032
MathSciNet
MATH
Google Scholar
Narisetty NN, He X et al (2014) Bayesian variable selection with shrinking and diffusing priors. Annal Stat 42(2):789–817
MathSciNet
MATH
Google Scholar
Noll JE, Vandyke K, Hewett DR, Mrozik KM, Bala RJ, Williams SA, Kok CH, Zannettino AC (2015) Pttg1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol 8(1):106
Google Scholar
Pan W, Kooperberg C (1999) Linear regression for bivariate censored data via multiple imputation. Stat Med 18(22):3111–3121
Google Scholar
Pan W, Louis TA (2000) A linear mixed-effects model for multivariate censored data. Biometrics 56(1):160–166
MATH
Google Scholar
Park T, Casella G (2008) The bayesian lasso. J Am Stat Assoc 103(482):681–686
MathSciNet
MATH
Google Scholar
Ročková V, George EI (2014) Emvs: the em approach to bayesian variable selection. J Am Stat Assoc 109(506):828–846
MathSciNet
MATH
Google Scholar
Sabourin JA, Valdar W, Nobel AB (2015) A permutation approach for selecting the penalty parameter in penalized model selection. Biometrics 71(4):1185–1194
MathSciNet
MATH
Google Scholar
Schneider H, Weissfeld L (1986) Estimation in linear models with censored data. Biometrika 73(3):741–745
MathSciNet
MATH
Google Scholar
Sha N, Tadesse MG, Vannucci M (2006) Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics 22(18):2262–2268
Google Scholar
Shaughnessy J (2005) Amplification and overexpression of cks1b at chromosome band 1q21 is associated with reduced levels of p27 kip1 and an aggressive clinical course in multiple myeloma. Hematology 10:117–126
Google Scholar
Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, Stewart JP, Kordsmeier B, Randolph C, Williams DR et al (2007) A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109(6):2276–2284
Google Scholar
Shi L, Campbell G, Jones W, Campagne F, Wen Z, Walker S, Su Z, Chu T, Goodsaid F, Pusztai L et al (2010) The maqc-ii project: a comprehensive study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnol 28:827–838
Google Scholar
Stute W, Wang JL (1993) The strong law under random censorship. Annal Stat 36:1591–1607
MathSciNet
MATH
Google Scholar
Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82(398):528–540
MathSciNet
MATH
Google Scholar
Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med 16(4):385–395
Google Scholar
Tsiatis AA (1990) Estimating regression parameters using linear rank tests for censored data. Annal Stat 90:354–372
MathSciNet
MATH
Google Scholar
Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L (2011) On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30(10):1105–1117
MathSciNet
Google Scholar
Van Erp S, Oberski DL, Mulder J (2019) Shrinkage priors for bayesian penalized regression. J Math Psychol 89:31–50
MathSciNet
MATH
Google Scholar
Visser M (1996) Nonparametric estimation of the bivariate survival function with an application to vertically transmitted aids. Biometrika 83(3):507–518
MATH
Google Scholar
Wang S, Nan B, Zhu J, Beer DG (2008) Doubly penalized buckley-james method for survival data with high-dimensional covariates. Biometrics 64(1):132–140
MathSciNet
MATH
Google Scholar
Wang X, Song L (2011) Adaptive lasso variable selection for the accelerated failure models. Commun Stat-Theory Methods 40(24):4372–4386
MathSciNet
MATH
Google Scholar
Wang YG, Fu L (2011) Rank regression for accelerated failure time model with clustered and censored data. Comput Stat Data Anal 55(7):2334–2343
MathSciNet
MATH
Google Scholar
Wei LJ (1992) The accelerated failure time model: a useful alternative to the cox regression model in survival analysis. Stat Med 11(14–15):1871–1879
Google Scholar
Wei LJ, Ying Z, Lin D (1990) Linear regression analysis of censored survival data based on rank tests. Biometrika 77(4):845–851
MathSciNet
Google Scholar
Xu J, Leng C, Ying Z (2010) Rank-based variable selection with censored data. Stat Comput 20(2):165–176
MathSciNet
Google Scholar
Yi GY, He W (2006) Methods for bivariate survival data with mismeasured covariates under an accelerated failure time model. Commun Stat-Theory Methods 35(8):1539–1554
MathSciNet
MATH
Google Scholar
Yin G, Cai J (2005) Quantile regression models with multivariate failure time data. Biometrics 61(1):151–161
MathSciNet
MATH
Google Scholar
Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028
Google Scholar
Zhu LP, Li L, Li R, Zhu LX (2011) Model-free feature screening for ultrahigh-dimensional data. J Am Stat Assoc 106(496):1464–1475
MathSciNet
MATH
Google Scholar