Skip to main content

Modeling marginal features in studies of recurrent events in the presence of a terminal event

Abstract

We study models for recurrent events with special emphasis on the situation where a terminal event acts as a competing risk for the recurrent events process and where there may be gaps between periods during which subjects are at risk for the recurrent event. We focus on marginal analysis of the expected number of events and show that an Aalen–Johansen type estimator proposed by Cook and Lawless is applicable in this situation. A motivating example deals with psychiatric hospital admissions where we supplement with analyses of the marginal distribution of time to the competing event and the marginal distribution of the time spent in hospital. Pseudo-observations are used for the latter purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aalen OO, Fosen J, Weedon-Fekjaer H, Borgan Ø (2004) Dynamic analysis of multivariate failure time data. Biometrics 60:764–773

    MathSciNet  Article  Google Scholar 

  2. Andersen PK (2013) Decomposition of number of years lost according to causes of death. Stat Med 32:5278–5285

    MathSciNet  Article  Google Scholar 

  3. Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    MathSciNet  Article  Google Scholar 

  4. Andersen PK, Perme MP (2010) Pseudo-observations in survival analysis. Stat Methods Med Res 19:71–99

    MathSciNet  Article  Google Scholar 

  5. Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  Google Scholar 

  6. Angst J, Gamma A, Selaro R, Lavori PW, Zhang H (2003) Recurrence of bipolar disorders and major depression. Eur Arch Psychiatry Clin Neurosci 253:236–240

    Article  Google Scholar 

  7. Binder N, Gerds TA, Andersen PK (2014) Pseudo-observations for competing risks with covariate dependent censoring. Lifetime Data Anal 20:303–315

    MathSciNet  Article  Google Scholar 

  8. Bulsara MK, Holman CDJ, Davis EA, Jones TW (2004) Evaluating risk factors associated with severe hypoglycaemia in epidemiology studies—What method should we use? Diabet Med 21:914–919

    Article  Google Scholar 

  9. Byar DP (1980) The veterans administrations study of chemoprophylaxis for recurrent stage I bladder tumors: comparisons of placebo, pyridoxine, and topical thiotepa. In: Pavone-Macaluso M, Smith PH, Edsmyr P (eds) Bladder tumors and other topics in urological oncology. Plenum, NewYork, pp 363–370

    Chapter  Google Scholar 

  10. Chiang CL (1980) An introduction to stochastic processes and their applications. Krieger, New York

    MATH  Google Scholar 

  11. Cook RJ, Lawless JF (1997) Marginal analysis of recurrent events and a terminating event. Stat Med 16:911–924

    Article  Google Scholar 

  12. Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  13. Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee KA (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104:60–75

    MathSciNet  Article  Google Scholar 

  14. Fosen J, Borgan Ø, Weedon-Fekjaer H, Aalen OO (2006) Dynamic analysis of recurrent event data using the additive hazard model. Biom J 48:381–398

    MathSciNet  Article  Google Scholar 

  15. Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, Ramsey BW, Rosenstein BJ, Smith AL, Wohl ME (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 331:637–642

    Article  Google Scholar 

  16. Ghosh D, Lin DY (2000) Nonparametric analysis of recurrent events and death. Biometrics 56:554–562

    MathSciNet  Article  Google Scholar 

  17. Ghosh D, Lin DY (2002) Marginal regression models for recurrent and terminal events. Stat Sin 12:663–688

    MathSciNet  MATH  Google Scholar 

  18. Grand MK, Putter H (2016) Regression models for expected length of stay. Stat Med 35:1178–1192

    MathSciNet  Article  Google Scholar 

  19. Graw F, Gerds TA, Schumacher M (2009) On pseudo-values for regression analysis in competing risks models. Lifetime Data Anal 15:241–255

    MathSciNet  Article  Google Scholar 

  20. Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Book  Google Scholar 

  21. Hu XJ, Lorenzi M, Spinelli JJ, Ying SC, McBride ML (2011) Analysis of recurrent events with non-negligible event duration, with application to assessing hospital utilization. Lifetime Data Anal 17:215–233

    MathSciNet  Article  Google Scholar 

  22. Huang C, Wang M (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99:1153–1165

    MathSciNet  Article  Google Scholar 

  23. Iacobelli S, Carstensen B (2013) Multiple time scales in multi-state models. Stat Med 30:5315–5327

    MathSciNet  Article  Google Scholar 

  24. Jacobsen M, Martinussen T (2016) A note on the large sample properties of estimators based on generalized linear models for correlated pseudo-observations. Scand J Stat 43:845–862

    MathSciNet  Article  Google Scholar 

  25. Kessing LV, Olsen EW, Andersen PK (1999) Recurrence in affective disorder: analyses with frailty models. Am. J Epidemiol 149:404–411

    Article  Google Scholar 

  26. Kessing LV, Hansen MG, Andersen PK, Angst J (2004) The predictive effect of episodes on the risk of recurrence in depressive and bipolar disorder—a life-long perspective. Acta Psychiatr Scand 109:339–344

    Article  Google Scholar 

  27. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP (2013) A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J Clin Epidemiol 66:648–653

    Article  Google Scholar 

  28. Lawless JF, Nadeau JC (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37:158–168

    MathSciNet  Article  Google Scholar 

  29. Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc Ser B 62:711–730

    MathSciNet  Article  Google Scholar 

  30. Mao L, Lin DY (2016) Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. Biostatistics 17:390–403

    MathSciNet  Article  Google Scholar 

  31. Mitton L, Sutherland H, Week M (eds) (2000) Microsimulation modelling for policy analysis. Challenges and innovations. Cambridge University Press, Cambridge

    Google Scholar 

  32. Overgaard M, Parner ET, Pedersen J (2017) Asymptotic theory of generalized estimating equations based on jack-knife pseudo-observations. Ann Stat 45:1988–2015

    MathSciNet  Article  Google Scholar 

  33. Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554

    Article  Google Scholar 

  34. Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68:373–379

    MathSciNet  Article  Google Scholar 

  35. Rogers JK, Pocock SJ, McMurray JJV, Granger CB, Michelson EJ, Ostergren J, Pfeffer MA, Solomon SD, Swedberg K, Yusuf S (2014) Analysing recurrent hospitalizations in heart failure: a review of ststistical methodology, with application to CHARM-preserved. Eur J Heart Fail 16:33–40

    Article  Google Scholar 

  36. Rondeau V, Mathoulin-Pelissier S, Jacqmin-Gadda H, Brouste V, Soubeyran P (2007) Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics 8:708–721

    Article  Google Scholar 

  37. Rondeau V, Mazroui Y, Gonzalez JR (2012) frailtypack: an R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J Stat Softw 47(4):1–28

    Article  Google Scholar 

  38. Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84:1065–1073

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Per Kragh Andersen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersen, P.K., Angst, J. & Ravn, H. Modeling marginal features in studies of recurrent events in the presence of a terminal event. Lifetime Data Anal 25, 681–695 (2019). https://doi.org/10.1007/s10985-019-09462-4

Download citation

Keywords

  • Competing risks
  • Expected number of events
  • Intensity-based models
  • Marginal models
  • Pseudo-observations
  • Recurrent events