Skip to main content

Bayesian bivariate survival analysis using the power variance function copula

Abstract

Copula models have become increasingly popular for modelling the dependence structure in multivariate survival data. The two-parameter Archimedean family of Power Variance Function (PVF) copulas includes the Clayton, Positive Stable (Gumbel) and Inverse Gaussian copulas as special or limiting cases, thus offers a unified approach to fitting these important copulas. Two-stage frequentist procedures for estimating the marginal distributions and the PVF copula have been suggested by Andersen (Lifetime Data Anal 11:333–350, 2005), Massonnet et al. (J Stat Plann Inference 139(11):3865–3877, 2009) and Prenen et al. (J R Stat Soc Ser B 79(2):483–505, 2017) which first estimate the marginal distributions and conditional on these in a second step to estimate the PVF copula parameters. Here we explore an one-stage Bayesian approach that simultaneously estimates the marginal and the PVF copula parameters. For the marginal distributions, we consider both parametric as well as semiparametric models. We propose a new method to simulate uniform pairs with PVF dependence structure based on conditional sampling for copulas and on numerical approximation to solve a target equation. In a simulation study, small sample properties of the Bayesian estimators are explored. We illustrate the usefulness of the methodology using data on times to appendectomy for adult twins in the Australian NH&MRC Twin registry. Parameters of the marginal distributions and the PVF copula are simultaneously estimated in a parametric as well as a semiparametric approach where the marginal distributions are modelled using Weibull and piecewise exponential distributions, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andersen EW (2005) Two-stage estimation in copula models used in family studies. Lifetime Data Anal 11:333–350

    MathSciNet  Article  MATH  Google Scholar 

  2. Choi YH, Matthews DE (2005) Accelerated life regression modelling of dependent bivariate time-to-event data. Can J Stat 33(3):449–464

    MathSciNet  Article  MATH  Google Scholar 

  3. Demarqui FN, Dey DK, Loschi RH, Colosimo EA (2014) Fully semiparametric Bayesian approach for modeling survival data with cure fraction. Biom J 56:198–218

    Article  MATH  Google Scholar 

  4. Duchateau L, Janssen P (2008) The Frailty model. Springer, New York

    MATH  Google Scholar 

  5. Duffy DL, Martin NG, Mathews JD (1990) Appendectomy in Australian twins. Am J Hum Genet 47(3):590–592

    Google Scholar 

  6. Embrechts P, Lindskog F, McNeil AJ (2003) Modelling dependence with copulas and applications to risk management. In: Rachev R (ed) Handbook of heavy tailed distributions in finance. Elsevier/North-Holland, Amsterdam, pp 329–384

    Chapter  Google Scholar 

  7. Fan J, Hsu L, Prentice R (2000) Dependence estimation over a finite bivariate failure time region. Lifetime Data Anal 6:343–355

    MathSciNet  Article  MATH  Google Scholar 

  8. Farrington CP, Unkel S, Anaya-Izquierdo K (2012) The relative frailty variance and shared frailty models. J R Stat Soc B 74:673–696

    MathSciNet  Article  Google Scholar 

  9. Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160

    MathSciNet  Article  MATH  Google Scholar 

  10. Genest C, MacKay J (1986) The joy of copulas: bivariate distributions with uniform marginals. Am Stat 40:280–285

    MathSciNet  Google Scholar 

  11. Goethals K, Janssen P, Duchateau L (2008) Frailty models and copulas: similarities and differences. J Appl Stat 35:1071–1079

    MathSciNet  Article  MATH  Google Scholar 

  12. Gunnes N, Borgan O, Aalen OO (2007) Estimating stage occupation probabilities in non-Markov models. Lifetime Data Anal 13:211–240

    MathSciNet  Article  MATH  Google Scholar 

  13. Hanagal D (2009) Modeling heterogeneity for bivariate survival data by power variance function distribution. J Reliab Stat Stud 2:14–27

    MATH  Google Scholar 

  14. Hougaard P (1986) Survival models for heterogeneous populations derived from stable distributions. Biometrika 73:387–396

    MathSciNet  Article  MATH  Google Scholar 

  15. Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Book  MATH  Google Scholar 

  16. Hu T, Nan B, Lin X, Robins JM (2011) Time-dependent cross ratio estimation for bivariate failure times. Biometrika 98:341–354

    MathSciNet  Article  MATH  Google Scholar 

  17. Huard D, Evin G, Favre AC (2006) Bayesian copula selection. Comput Stat Data Anal 51:809–822

    MathSciNet  Article  MATH  Google Scholar 

  18. Ibrahim JG, Chen M-H, Sinha D (2001) Bayesian semiparametric models for survival data with a cure fraction. Biometrics 57:383–388

    MathSciNet  Article  MATH  Google Scholar 

  19. Joe H (2005) Asymptotic efficiency of the two-stage estimation method for copula-based models. J Multivar Anal 94:401–419

    MathSciNet  Article  MATH  Google Scholar 

  20. Joe H (2015) Dependence modeling with copulas. CRC Press, Boca Raton

    MATH  Google Scholar 

  21. Kauermann G, Meyer R (2013) Penalized marginal likelihood estimation and finite mixtures of Archimedean copulas. Comput Stat 29:283–306

    MathSciNet  Article  MATH  Google Scholar 

  22. Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  23. Lunn D, Jackson C, Best N, Thomas A, Spielgelhalter D (2013) The BUGS book. A practical introduction to bayesian analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  24. Mai J, Scherer M (2012) Simulating copulas: stochastic models, sampling algorithms, and applications. Imperial College, Boca Raton

    Book  MATH  Google Scholar 

  25. Mallick M, Ravishanker N (2005) Multivariate survival analysis with PVF frailty models. In: Balakrishnan N, Kannan N, Nagaraja HN (eds) Advances in ranking and selection, multiple comparisons, and reliability statistics for industry and technology. Birkhauser, Boston, pp 369–384

    Google Scholar 

  26. Mallick M, Ravishanker N (2006) PVF frailty models with a flexible baseline hazard. Int J Stat Syst 1:57–80

    Google Scholar 

  27. Marshall AW, Olkin I (1988) Families of multivariate distributions. J Am Stat Assoc 83:834–841

    MathSciNet  Article  MATH  Google Scholar 

  28. Massonnet G, Janssen P, Duchateau L (2009) Modelling udder infection data using copula models for quadruples. J Stat Plann Inference 139(11):3865–3877

    MathSciNet  Article  MATH  Google Scholar 

  29. Meyer R (2016) Deviance information criterion (DIC). Wiley StatsRef: Statistics Reference Online

  30. Meyer R, Romeo JS (2015) Bayesian semi-parametric analysis of recurrent failure time data using copulas. Biom J 57:982–1001

    MathSciNet  Article  MATH  Google Scholar 

  31. Neal R (2003) Slice sampling. Ann Stat 31:705–767

    MathSciNet  Article  MATH  Google Scholar 

  32. Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  33. Oakes D (1989) Bivariate survival models induced by frailties. J Am Stat Assoc 84:487–493

    MathSciNet  Article  MATH  Google Scholar 

  34. Pereira CAB, Stern J, Wechsler S (2008) Can a significance test be genuinely bayesian? Bayesian Anal 3:15–36

    MathSciNet  Article  MATH  Google Scholar 

  35. Prenen L, Braekers R, Duchateau L (2017) Extending the Archimedean copula methodology to model multivariate survival data grouped in clusters of variable size. J R Stat Soc Ser B 79(2):483–505

    MathSciNet  Article  Google Scholar 

  36. Prentice RL, Hsu L (1997) Regression on hazard ratios and cross ratios in multivariate failure time analysis. Biometrika 84:349–363

    MathSciNet  Article  MATH  Google Scholar 

  37. Romeo JS, Meyer R (2015) Bayesian approach for modelling bivariate survival data through the PVF copula. In: Friedl H, Wagner H (eds). Proceedings of the 30th International Workshop on Statistical Modelling, vol. 2. Linz, pp 239–242

  38. Romeo JS, Tanaka NI, Pedroso-de-Lima AC (2006) Bivariate survival modeling: a bayesian approach based on copulas. Lifetime Data Anal 12:205–222

    MathSciNet  Article  MATH  Google Scholar 

  39. Silva RS, Lopes HF (2008) Copula, marginal distributions and model selection: a bayesian note. Stat Comput 18:313–320

    MathSciNet  Article  Google Scholar 

  40. Smith MS (2013) Bayesian approaches to copula modelling. In: Damien P, Dellaportas P, Polson NG, Stephens DA (eds) Bayesian theory and applications. Oxford University Press, Oxford, pp 336–358

    Chapter  Google Scholar 

  41. Spiegelhalter DJ, Best NG, Carlin BP, Linde AVD (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc B 64:583–639

    MathSciNet  Article  MATH  Google Scholar 

  42. Tweedie MCK (1984) An index which distinguishes between some important exponential families. In: Ghosh JK, Roy J (eds). Statistics: applications and new directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. Indian Statistical Institute, Calcutta, pp 579–604

  43. Wasinrat S, Bodhisuwan W, Zeephongse P, Thongtheer A (2013) A mixture of Weibull hazard rate with a power variance function frailty. J Appl Sci 13:103–110

    Article  Google Scholar 

  44. Wienke A (2010) Frailty models in survival analysis. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose S. Romeo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romeo, J.S., Meyer, R. & Gallardo, D.I. Bayesian bivariate survival analysis using the power variance function copula. Lifetime Data Anal 24, 355–383 (2018). https://doi.org/10.1007/s10985-017-9396-1

Download citation

Keywords

  • Multivariate survival analysis
  • Archimedean copulas
  • Dependence
  • Bayesian analysis