Lifetime Data Analysis

, Volume 21, Issue 4, pp 493–516 | Cite as

Z-estimation and stratified samples: application to survival models

Article

Abstract

The infinite dimensional Z-estimation theorem offers a systematic approach to joint estimation of both Euclidean and non-Euclidean parameters in probability models for data. It is easily adapted for stratified sampling designs. This is important in applications to censored survival data because the inverse probability weights that modify the standard estimating equations often depend on the entire follow-up history. Since the weights are not predictable, they complicate the usual theory based on martingales. This paper considers joint estimation of regression coefficients and baseline hazard functions in the Cox proportional and Lin–Ying additive hazards models. Weighted likelihood equations are used for the former and weighted estimating equations for the latter. Regression coefficients and baseline hazards may be combined to estimate individual survival probabilities. Efficiency is improved by calibrating or estimating the weights using information available for all subjects. Although inefficient in comparison with likelihood inference for incomplete data, which is often difficult to implement, the approach provides consistent estimates of desired population parameters even under model misspecification.

Keywords

Semiparametric models Proportional hazards Additive hazards Calibration of sampling weights Model misspecification Survey sampling 

References

  1. Aalen O (1976) Nonparametric inference in connection with multiple decrement models. Scand J Stat 3:15–27MATHMathSciNetGoogle Scholar
  2. Aalen OO, Borgan O, Gjessing HK (2008) Survival and event history analysis. Springer, New YorkMATHCrossRefGoogle Scholar
  3. Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120MATHMathSciNetCrossRefGoogle Scholar
  4. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL (2003) Implementation of the Women’s Health Initiative study design. Ann Epidemiol 13:S5–S17CrossRefGoogle Scholar
  5. Barlow R, Bartholomew D, Bremner J, Brunk H (1972) Statistical inference under order restrictions. Wiley, New YorkMATHGoogle Scholar
  6. Begun JM, Hall WJ, Huang WM, Wellner JA (1983) Information and asymptotic efficiency in parametric–nonparametric models. Ann Stat 11:432–452MATHMathSciNetCrossRefGoogle Scholar
  7. Bickel P, Klaassen C, Ritov Y, Wellner J (1993) Efficient and adaptive estimation for semiparametric models. The Johns Hopkins University Press, BaltimoreMATHGoogle Scholar
  8. Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J (2000) Exposure stratified case–cohort designs. Lifetime Data Anal 6:39–58MATHMathSciNetCrossRefGoogle Scholar
  9. Breslow N, Crowley J (1974) A large sample study of the life table and product limit estimates under random censorship. Ann Stat 2:437–453MATHMathSciNetCrossRefGoogle Scholar
  10. Breslow NE, Lumley T (2013) Semiparametric models and two-phase samples: applications to Cox regression. In: IMS collections, vol. 9, Institute of Mathematical Statistics, Beachwood, OH, pp 65–77Google Scholar
  11. Breslow NE, Wellner JA (2007) Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. Scand J Stat 34:86–102MATHMathSciNetCrossRefGoogle Scholar
  12. Breslow NE, Wellner JA (2008) A Z-theorem with estimated nuisance parameters and correction note for ‘Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression’. Scand J Stat 35:186–192MathSciNetCrossRefGoogle Scholar
  13. Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M (2009a) Improved Horvitz–Thompson estimation of model parameters from two-phase stratified samples: applications in epidemiology. Statist Biosci 1:32–49CrossRefGoogle Scholar
  14. Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M (2009b) Using the whole cohort in the analysis of case–cohort data. Am J Epidemiol 169:1398–1405CrossRefGoogle Scholar
  15. Cox DR (1961) Tests of separate families of hypotheses. In: Proceedings of the fourth Berkeley symposium on mathematical statististics and probability, vol. 1, University of California Press, Berkeley, CA, pp 105–123Google Scholar
  16. Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc (Ser B) 34:187–220MATHGoogle Scholar
  17. Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:376–382MATHCrossRefGoogle Scholar
  18. Freedman DA (2006) On the so-called “Huber sandwich estimator” and “robust standard errors”. Am Stat 60:299–302CrossRefGoogle Scholar
  19. Godambe VP (1960) An optimum property of regular maximum-likelihood estimation. Ann Math Stat 31:1208–1211MathSciNetCrossRefGoogle Scholar
  20. Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, University of California Press, Berkeley, CA, pp 221–233Google Scholar
  21. Huber PJ (1980) Robust statistics. Wiley, New YorkGoogle Scholar
  22. Kalbfleisch JD, Prentice R (2002) The statistical analysis of failure time data, 2nd edn. Wiley, Hoboken, NJMATHCrossRefGoogle Scholar
  23. Keogh RH, White IR (2013) Using full-cohort data in nested case–control and case–cohort studies by multiple imputation. Stat Med 32:4021–4043MathSciNetCrossRefGoogle Scholar
  24. Kulich M, Lin DY (2000) Additive hazards regression for case–cohort studies. Biometrika 87:73–87MATHMathSciNetCrossRefGoogle Scholar
  25. Kulich M, Lin DY (2004) Improving the efficiency of relative-risk estimation in case–cohort studies. J Am Stat Assoc 99:832–844MATHMathSciNetCrossRefGoogle Scholar
  26. Li G, Tseng CH (2008) Non-parametric estimation of a survival function with two-stage design studies. Scand J Stat 35:193–211MATHMathSciNetCrossRefGoogle Scholar
  27. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22MATHMathSciNetCrossRefGoogle Scholar
  28. Lin DY, Wei LJ (1989) The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84:1074–1078MATHMathSciNetCrossRefGoogle Scholar
  29. Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71MATHMathSciNetCrossRefGoogle Scholar
  30. Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  31. Lumley T (2009) Robustness of semiparametric efficiency in nearly-correct models for two-phase samples. UW Biostatistics Working Paper Series. http://biostats.bepress.com/uwbiostat/paper351, Accessed 22 November 2014
  32. Lumley T (2012) Complex surveys: a guide to analysis using R. Wiley, Hoboken, NJGoogle Scholar
  33. Lumley T, Shaw PA, Dai JY (2011) Connections between survey calibration estimators and semiparametric models for incomplete data. Int Stat Rev 79:200–220MATHCrossRefGoogle Scholar
  34. Marti H, Chavance M (2011) Multiple imputation analysis of case–cohort studies. Stat Med 30:1595–1607MathSciNetCrossRefGoogle Scholar
  35. McKeague IW, Sasieni PD (1994) A partly parametric additive risk model. Biometrika 81:501–514MATHMathSciNetCrossRefGoogle Scholar
  36. Nan B (2004) Efficient estimation for case–cohort studies. Can J Stat 32:403–419MATHMathSciNetCrossRefGoogle Scholar
  37. Nan B, Emond M, Wellner JA (2004) Information bounds for Cox regression models with missing data. Ann Stat 32:723–753MATHMathSciNetCrossRefGoogle Scholar
  38. Nelson W (1972) Theory and applications of hazard plotting for censored failure data. Technometrics 14:945–966CrossRefGoogle Scholar
  39. Prentice RL (1986) A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:1–11MATHMathSciNetCrossRefGoogle Scholar
  40. Robins JM, Rotnitzky A, Zhao LP (1994) Estimation of regression-coefficients when some regressors are not always observed. J Am Stat Assoc 89:846–866MATHMathSciNetCrossRefGoogle Scholar
  41. Royall RM (1986) Model robust confidence-intervals using maximum-likelihood estimators. Int Stat Rev 54:221–226MATHMathSciNetCrossRefGoogle Scholar
  42. Saegusa T, Wellner JA (2013) Weighted likelihood estimation under two-phase sampling. Ann Stat 41:269–295MATHMathSciNetCrossRefGoogle Scholar
  43. Särndal C, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer, New YorkMATHCrossRefGoogle Scholar
  44. Scheike TH, Martinussen T (2004) Maximum likelihood estimation for Cox’s regression model under case-cohort sampling. Scand J Stat 31:283–293MATHMathSciNetCrossRefGoogle Scholar
  45. Struthers CA, Kalbfleisch JD (1986) Misspecified proportional hazard models. Biometrika 73:363–369MATHMathSciNetCrossRefGoogle Scholar
  46. Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer, New YorkCrossRefGoogle Scholar
  47. Tsiatis AA (1981) A large sample study of Cox’s regression model. Ann Stat 9:93–108MATHMathSciNetCrossRefGoogle Scholar
  48. van der Vaart AW (1995) Efficiency of infinite dimensional M-estimators. Stat Neerl 49:9–30Google Scholar
  49. van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge, UKGoogle Scholar
  50. van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes with applications in statistics. Springer, New YorkGoogle Scholar
  51. Williams OD (1989) The Atherosclerosis Risk in Communities (ARIC) study—design and objectives. Am J Epidemiol 129:687–702Google Scholar
  52. Zeng DL, Lin DY (2014) Efficient estimation of semiparametric transformation models for two-phase cohort studies. J Am Stat Assoc 109:371–383MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiostatisticsUniversity of WashingtonSeattleUSA
  2. 2.Department of StatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations