Skip to main content

Nonparametric estimation of the conditional mean residual life function with censored data

Abstract

The conditional mean residual life (MRL) function is the expected remaining lifetime of a system given survival past a particular time point and the values of a set of predictor variables. This function is a valuable tool in reliability and actuarial studies when the right tail of the distribution is of interest, and can be more informative than the survivor function. In this paper, we identify theoretical limitations of some semi-parametric conditional MRL models, and propose two nonparametric methods of estimating the conditional MRL function. Asymptotic properties such as consistency and normality of our proposed estimators are established. We investigate via simulation study the empirical properties of the proposed estimators, including bootstrap pointwise confidence intervals. Using Monte Carlo simulations we compare the proposed nonparametric estimators to two popular semi-parametric methods of analysis, for varying types of data. The proposed estimators are demonstrated on the Veteran’s Administration lung cancer trial.

This is a preview of subscription content, access via your institution.

References

  • Abdous B, Berred A (2005) Mean residual life estimation. J Stat Plann Inference 132: 3–19

    Article  MATH  MathSciNet  Google Scholar 

  • Babu GJ, Canty AJ, Chaubey YP (2002) Application of Bernstein polynomials for smooth estimation of a distribution and density function. J Stat Plann Inference 105: 377–392

    Article  MATH  MathSciNet  Google Scholar 

  • Carnicer JM, Peña JM (1993) Shape preserving representations and optimality of the Bernstein basis. Adv Comput Math 1: 173–196

    Article  MATH  MathSciNet  Google Scholar 

  • Chaubey YP, Sen A (2008) Smooth estimation of mean residual life under random censoring. In: Balakrishnan N, Peña EA, Silvapulle MJ (eds) Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen. Inst Math Stat, Beachwood, pp 35–49

    Chapter  Google Scholar 

  • Chaubey YP, Sen PK (1999) On smooth estimation of mean residual life. J Stat Plann Inference 75: 223–236

    Article  MATH  MathSciNet  Google Scholar 

  • Chen YQ (2007) Additive expectancy regression. J Am Stat Assoc 102: 153–166

    Article  MATH  Google Scholar 

  • Chen YQ, Cheng S (2005) Semiparametric regression analysis of mean residual life with censored survival data. Biometrika 92: 19–29

    Article  MATH  MathSciNet  Google Scholar 

  • Chen YQ, Cheng S (2006) Linear life expectancy regression with censored data. Biometrika 93: 303–313

    Article  MATH  MathSciNet  Google Scholar 

  • Chen YQ, Jewell NP, Lei X, Cheng SC (2005) Semiparametric estimation of proportional mean residual life model in presence of censoring. Biometrics 61: 170–178

    Article  MATH  MathSciNet  Google Scholar 

  • Dabrowska DM (1987) Nonparametric regression with censored survival time data. Scand J Stat 14(3): 181–197

    MATH  MathSciNet  Google Scholar 

  • Dabrowska DM (1989) Uniform consistency of the kernel conditional Kaplan–Meier estimate. Ann Stat 17: 1157–1167

    Article  MATH  MathSciNet  Google Scholar 

  • Dabrowska DM (1992) Variable bandwidth conditional Kaplan–Meier estimate. Scand J Stat 19: 351–361

    MATH  MathSciNet  Google Scholar 

  • Feller W (1965) An introduction to probability theory and its applications, vol. II. Wiley, New York

    Google Scholar 

  • Gonzalez-Manteiga W, Cadarso-Suarez C (1994) Asymptotic properties of a generalized Kaplan–Meier estimator with some applications. J Nonparametr Stat 4: 65–78

    Article  MATH  MathSciNet  Google Scholar 

  • Györfi L, Kohler M, Krzyzak A, Walk H (2002) A distribution-free theory of nonparametric regression. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Hall WJ, Wellner J (1984) Mean residual life. In: Csörgő M, Dawson DA, Rao JNK, Saleh AKME (eds) Proceedings of the international symposium on statistics and related topics. North-Holland, Amsterdam, pp 169–184

  • Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. J Stat Softw 27: 1–32

    Google Scholar 

  • Hu Z, Follmann DA, Qin J (2010) Semiparametric dimension reduction estimation for mean response with missing data. Biometrika 97: 305–319

    Article  MATH  MathSciNet  Google Scholar 

  • Iglesias-Pérez C, González-Manteiga W (1999) Strong representation of a generalized product-limit estimator for truncated and censored data with some applications. J Nonparametr Stat 10: 213–244

    Article  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York-Chichester-Brisbane

    MATH  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81: 61–71

    Article  MATH  MathSciNet  Google Scholar 

  • Oakes D, Dasu T (1990) A note on residual life. Biometrika 77: 409–410

    Article  MATH  MathSciNet  Google Scholar 

  • Pintér M (2001) Consistency results in nonparametric regression estimation and classification. PhD thesis, Technical University of Budapest

  • Sen PK (1999) The mean residual life with a concomitant. In: Dixit UJ, Satam MR (eds) Statistical inference and design of experiments. Narosa Publishing House, New Delhi, pp 71–91

    Google Scholar 

  • Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B 53: 683–690

    MATH  MathSciNet  Google Scholar 

  • Stone CJ (1977) Consistent nonparametric regression. Ann Stat 5: 595–620

    Article  MATH  Google Scholar 

  • Sun L, Zhang Z (2009) A class of transformed mean residual life models with censored survival data. J Am Stat Assoc 104: 803–815

    Article  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer-Verlag, New York

    MATH  Google Scholar 

  • Yang G (1977) Life expectancy under random censorship. Stoch Process Appl 6: 33–39

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander C. McLain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McLain, A.C., Ghosh, S.K. Nonparametric estimation of the conditional mean residual life function with censored data. Lifetime Data Anal 17, 514–532 (2011). https://doi.org/10.1007/s10985-011-9197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-011-9197-x

Keywords

  • Covariates
  • Local averaging
  • Mean residual life
  • Right censoring
  • Smoothing