Skip to main content


Log in

Marginal Regression of Multivariate Event Times Based on Linear Transformation Models

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript


Multivariate event time data are common in medical studies and have received much attention recently. In such data, each study subject may potentially experience several types of events or recurrences of the same type of event, or event times may be clustered. Marginal distributions are specified for the multivariate event times in multiple events and clustered events data, and for the gap times in recurrent events data, using the semiparametric linear transformation models while leaving the dependence structures for related events unspecified. We propose several estimating equations for simultaneous estimation of the regression parameters and the transformation function. It is shown that the resulting regression estimators are asymptotically normal, with variance–covariance matrix that has a closed form and can be consistently estimated by the usual plug-in method. Simulation studies show that the proposed approach is appropriate for practical use. An application to the well-known bladder cancer tumor recurrences data is also given to illustrate the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • S. Bennett (1983) ArticleTitleAnalysis of survival data by the proportional odds model Statistics in Medicine 2 273–277 Occurrence Handle6648142

    PubMed  Google Scholar 

  • P. J. Bickel C. A. J. Klaassen Y. Ritov J. A. Wellner (1993) Efficient and Adaptive Estimation for Semiparametric Models Johns Hopkins University Press Baltimore

    Google Scholar 

  • D. P. Byar (1980) The veterans administration study of chempoprophylaxis for recurrent stage I bladder tumors: comparisons of placebo, pyridoxine, and topical thiotepa M. Pavone-Macaluso P. H. Smith F. Edsmyn (Eds) Bladder Tumors and Other Topics in Urological Oncology Plenum New York 363–370

    Google Scholar 

  • K. Chen Z. Jin Z. Ying (2002) ArticleTitleSemiparametric analysis of transformation models with censored data Biometrika 89 659–668 Occurrence Handle10.1093/biomet/89.3.659

    Article  Google Scholar 

  • S. C. Cheng L. J. Wei Z. Ying (1995) ArticleTitleAnalysis of transformation models with censored data Biometrika 82 835–845

    Google Scholar 

  • S. C. Cheng L. J. Wei Z. Ying (1997) ArticleTitlePrediction of survival probabilities with semi-parametric transformation models Journal of the American Statistical Association 92 227–235

    Google Scholar 

  • D. Clayton J. Cuzick (1985) ArticleTitleMultivariate generalizations of the proportional hazards model (with Discussion) Journal of the Royal Statistical Society Series A 148 82–117

    Google Scholar 

  • D. R. Cox (1972) ArticleTitleRegression models and life tables (with Discussion) Journal of the Royal Statistical Society Series B 34 187–220

    Google Scholar 

  • D. M. Dabrowska K. A. Doksum (1988) ArticleTitleEstimation and testing in the two-sample generalized odds rate model Journal of the American Statistical Association 83 744–749

    Google Scholar 

  • J. Fine Z. Ying L. J. Wei (1998) ArticleTitleOn the linear transformation model for censored data Biometrika 85 980–986 Occurrence Handle10.1093/biomet/85.4.980

    Article  Google Scholar 

  • E. J. Gumbel (1960) ArticleTitleBivariate exponential distribution Journal of the American Statistical Association 55 698–707

    Google Scholar 

  • E. B. Hoffman P. K. Sen C. R. Weinberg (2001) ArticleTitleWithin-cluster resampling Biometrika 88 1121–1134 Occurrence Handle10.1093/biomet/88.4.1121 Occurrence HandleMR1872223

    Article  MathSciNet  Google Scholar 

  • Y. Huang Y. Q. Chen (2003) ArticleTitleMarginal regression of gaps between recurrent events Lifetime Data Analysis 9 293–303 Occurrence Handle10.1023/A:1025892922453 Occurrence Handle14649847 Occurrence HandleMR2016624

    Article  PubMed  MathSciNet  Google Scholar 

  • J. F. Lawless, C.Nadeau and R. J. Cook, “Analysis of mean and rate functions for recurrent events,” in Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, (D. Y. Lin and T. R. Fleming, eds.) Springer-Verlong: New York, pp. 37--49, 1997.

  • D. Y. Lin (1994) ArticleTitleCox regression analysis of multivariate failure time data: the marginal approach Statistics in Medicine 13 2233–2247 Occurrence Handle7846422

    PubMed  Google Scholar 

  • D. Y. Lin L. J. Wei I. Yang Z. Ying (2000) ArticleTitleRobust inferences for the Andersen–Gill counting process model Journal of the Royal Statistical Society Series B 62 711–730 Occurrence Handle10.1111/1467-9868.00259 Occurrence HandleMR1796287

    Article  MathSciNet  Google Scholar 

  • S. A. Murphy A. J. Rossini A. W. Vaart Particlevan der (1997) ArticleTitleMaximum likelihood estimation in the proportional odds model Journal of the American Statistical Association 92 968–976

    Google Scholar 

  • M. S. Pepe J. Cai (1993) ArticleTitleSome graphical displays and marginal regression analysis for recurrent failure times and time dependent covariates Journal of the American Statistical Association 88 811–820

    Google Scholar 

  • A. N. Pettitt (1982) ArticleTitleInference for the linear model using a likelihood based on ranks Journal of the Royal Statistical Society Series B 44 234–243

    Google Scholar 

  • A. N. Pettitt (1984) ArticleTitleProportional odds model for survival data and estimates using ranks Applied Statistics 33 169–175

    Google Scholar 

  • D. Pollard (1990) Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics NumberInSeries2 IMS Hayward

    Google Scholar 

  • R. L. Prentice L. Hsu (1997) ArticleTitleRegression on hazards ratios and cross ratios in multivariate time analysis Biometrika 84 349–363 Occurrence Handle10.1093/biomet/84.2.349 Occurrence HandleMR1467052

    Article  MathSciNet  Google Scholar 

  • H. Reinhard (1987) Differential Equations: Foundations and Applications Macmillan New York

    Google Scholar 

  • C. F. Spiekerman D. Y. Lin (1998) ArticleTitleMarginal regression models for multivariate failure time data Journal of the American Statistical Association 93 1164–1175

    Google Scholar 

  • M. C. Wang S. H. Chang (1999) ArticleTitleNonparametric estimation of a recurrent survival function Journal of the American Statistical Association 94 146–153

    Google Scholar 

  • L. J. Wei D. Y. Lin L. Weissfeld (1989) ArticleTitleRegression analysis of multivariate incomplete failure time data by modelling marginal distributions Journal of the American Statistical Association 84 1065–1073

    Google Scholar 

  • J. M. Williamson, S. Datta and G. A. Satten, “Marginal analysis of clustered data when cluster size is informative,” Biometrics vol. 59 pp. 36–42, 2003.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wenbin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W. Marginal Regression of Multivariate Event Times Based on Linear Transformation Models. Lifetime Data Anal 11, 389–404 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: