Skip to main content

Advertisement

Log in

Landscape anthropization explains the genetic structure of an endemic Mexican bird (Thryophilus sinaloa: Troglodytidae) across the tropical dry forest biodiversity hotspot

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Tropical dry forests (TDFs) are one of the richest and also one of the most threatened ecosystems in the world due to anthropization. In Mexico, only a minimal proportion of TDF is conserved in protected areas, typically surrounded by human-modified landscapes. Habitat modification can impact gene flow, affecting the populations’ genetic structure, and ultimately, the long-term persistence of natural populations.

Objectives

We examined the influence of landscape features on the genetic connectivity of Thryophilus sinaloa, a common and highly territorial TDF-associated bird species. We conducted our study in a Mexican landscape along the Pacific coast characterized by a protected area surrounded by a heterogenous human-modified landscape.

Methods

We genotyped 90 individuals from 20 localities at 24,549 SNPs derived from 3RADseq and de novo assembling techniques to examine the relationship between population genetic patterns and landscape features using a resistance surface optimization framework.

Results

Populations were genetically structured in two groups across the landscape. An open-areas resistance surface, along with geographic distance, reduced genetic connectivity. This finding suggests that protected areas are partially isolated from TDF fragments and other non-protected areas.

Conclusions

Our research highlights the impact of TDF landscape modification by human-induced activities on the genetic connectivity of a common bird. Our study reveals that the only TDF reserve in the region is mostly disconnected from other remnants of non-protected areas of continuous TDF. The increasing deterioration of the habitat could eventually cause a decrease in genetic diversity and effective population size. Moreover, genetic differentiation could be enhanced as habitat patches are more isolated, increasing the likelihood of local extinctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Neutral SNPs dataset from the de novo alignment is accessible at OSF open platform (https://osf.io/3unxt/). Scripts of the analyzes performed in R packages can be found in the supplementary information.

References

  • Adams RV, Burg TM (2015) Gene flow of a forest-dependent bird across a fragmented landscape. PLoS ONE 10(11):e0140938

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams RV, Lazerte SE, Otter KA, Burg TM (2016) Influence of landscape features on the microgeographic genetic structure of a resident songbird. Heredity 117(2):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird SF (1864) Review of American birds, in the museum of the Smithsonian institution. Smithsonian Institution, Washington

    Google Scholar 

  • Barr KR, Kristine EK, Preston KL et al (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus). Mol Ecol 24(10):2349–2363

    Article  PubMed  Google Scholar 

  • Bauer DF (1972) Constructing confidence sets using rank statistics. J Am Stat Assoc 67:687–690

    Article  Google Scholar 

  • Bayona-Vásquez NJ, Glenn TC, Kieran TJ et al (2019) Adapterama III: quadruple-Indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD). PeerJ 7:e7724

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Royal Soc B-Biol Sci 263(1377):1619–1626

    Article  Google Scholar 

  • Berkman LK, Nielsen CK, Roy CL, Heist EJ (2013) Population genetic structure among bobwhite in an agriculturally modified landscape. J Wildl Manage 77(7):1472–1481

    Article  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton, University Press, Princeton

    Book  Google Scholar 

  • Caizergues A, Rätti O, Helle P et al (2003) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305

    Article  PubMed  Google Scholar 

  • Cameron AC, Page RB, Watling JI et al (2019) Using a comparative approach to investigate the relationship between landscape and genetic connectivity among woodland salamander populations. Conserv Genet 20:1265–1280

    Article  CAS  Google Scholar 

  • Capurucho JMG, Cornelius C, Borges SH et al (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linn Soc 110(1):60–76

    Article  Google Scholar 

  • Catchen J, Amores A, Bassham S et al (2013) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genetics 1(3):171–182

    Article  Google Scholar 

  • Chhatre VE, Emerson KJ (2017) StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinform. https://doi.org/10.1186/s12859-017-1593-0

    Article  Google Scholar 

  • Claramunt S, Hong M, Bravo A (2022) The effect of flight efficiency on gap-crossing ability in Amazonian forest birds. Biotropica 54(4):860–868

    Article  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2022) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  • Covarrubias S, Gutiérrez-Rodríguez C, Rojas-Soto O et al (2022) Functional connectivity of an endemic tree frog in a highly threatened tropical dry forest in Mexico. Ecoscience 29(1):69–85

    Article  Google Scholar 

  • Dallimer M, Rouquette JR, Skinner AMJ et al (2012) Contrasting patterns in species richness of birds, butterflies and plants along riparian corridors in an urban landscape. Divers Distrib 18(8):742–753

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Develey PF, Stouffer PC (2001) Effects of roads on movements by understory birds in mixed-species flocks in central Amazonian Brazil. Conserv Biol 15(5):1416–1422

    Google Scholar 

  • Do C, Waples RS, Peel D (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Manzanero A, Luna-Bárcenas, Dyer RJ et al (2018) Functional connectivity and home range inferred at a microgeographic landscape genetics scale in a desert-dwelling rodent. Ecol Evol 9(1):437–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140

    Article  Google Scholar 

  • Friis G, Atwell J, Fudickar A et al (2021) Rapid evolutionary divergence of a songbird population following recent colonization of an anthropogenic habitat. Mol Ecol 31(9):2625–2643

    Article  Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between central and south America, pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69(2):557–593

    Article  Google Scholar 

  • Gillies CS, Clair CCS (2008) Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proc Natl Acad Sci USA 105(50):19774–19779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn TC, Nilsen RA, Kieran TJ et al (2019) Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). Peerj 7:e7755

    Article  PubMed  PubMed Central  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Article  Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5(1):184–186

    Article  Google Scholar 

  • Graham BA, Heath DD, Mennill DJ (2017) Dispersal influences genetic and acoustic spatial structure for both males and females in a tropical songbird. Ecol Evol 7(23):10089–10102

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant P (1966) The coexistence of two wren species of the genus Thryothorus. Wilson Bull 78(3):266–278

    Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5(3):131–138

    Article  Google Scholar 

  • Hernández-Guzmán R, Ruíz-Luna A, González C (2019) Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. Remote Sens Appl-Soc Environ 13:318–327

    Google Scholar 

  • Huynh LY, Maney DL, Thomas JW (2010) Contrasting population genetic patterns within the white-throated sparrow genome (Zonotrichia albicollis). BMC Genet 11(96):1

    Google Scholar 

  • Jahner JP, Gibson D, Weitzman CL et al (2016) Fine-scale genetic structure among greater sage-grouse leks in central Nevada. BMC Evol Biol 16:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson CD, Evans d, Jones D (2017) Birds and roads: reduced transit for smaller species over roads within and urban environment. Front Ecol Evol 5:36

    Article  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85(10):1049–1064

    Article  Google Scholar 

  • Khimoun A, Peterman W, Eraud C et al (2017) Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird. Mol Ecol 26(19):4906–4919

    Article  CAS  PubMed  Google Scholar 

  • Klinga P, Mikolas M, Delegan IV et al (2020) Temporal landscape genetic data indicate an ongoing disruption of gene flow in a relict bird species. Conserv Genet 21(2):329–340

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozakiewicz CP, Carver S, Burridge CP (2018) Under-representation of avian studies in landscape genetics. Ibis 160(1):1–12

    Article  Google Scholar 

  • Luu K, Bazin E, Blum MGB (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011) Use of tropical dry forests and agricultural areas by neotropical bird communities. Biotropica 43(3):365–370

    Article  Google Scholar 

  • Malpica A, Mendoza-Cuenca L, González C (2022) Color and morphological differentiation in the Sinaloa Wren (Thryophilus sinaloa) in the tropical dry forests of Mexico: the role of environment and geographic isolation. PLoS ONE 17(6):e0269860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manel S, Joost S, Epperson BK et al (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19(17):3760–3772

    Article  CAS  PubMed  Google Scholar 

  • Manichaikul A, Mychaleckyj JC, Rich SS et al (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26(22):2867–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez A, Finegan B, DeClerck F et al (2011) Movimientos de Thryothorus rufalbus (aves: Troglodytidae) y conecctividad funcional en el paisaje frgamentado de Mariguás. Nicaragua Agroforestería en las Américas 48:94–102

    Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60(8):1551–1561

    PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724

    Article  PubMed  Google Scholar 

  • Miles L, Newton AC, DeFries RS et al (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33(3):491–505

    Article  Google Scholar 

  • Miller MP, Gratto-Trevor C, Haig SM et al (2013) Population genetics and evaluation of genetic evidence for subspecies in the semipalmated sandpiper (Calidris pusilla). Waterbirds 36(2):166–178

    Article  Google Scholar 

  • Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10(10):1808–1813

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Olah G, Smith AL, Asner GP et al (2017) Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landscape Ecol 32(2):445–456

    Article  Google Scholar 

  • Paris JR, Stevens JR, Catchen JM (2017) Lost in parameter space: a road map for stacks. Methods Ecol Evol 8(10):1360–1373

    Article  Google Scholar 

  • Pavlova A, Beheregaray LB, Coleman R et al (2017) Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol Appl 10(6):531–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23(10):2402–2413

    Article  PubMed  Google Scholar 

  • Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9(6):1638–1647

    Article  Google Scholar 

  • Prieto-Torres DA, Rojas-Soto OR, Santiago-Alarcon D et al (2019) Diversity, endemism, species turnover and relationships among avifauna of neotropical seasonally dry forests. Ardeola 66(2):257–277

    Article  Google Scholar 

  • Primmer CR, Borge T, Lindell J, Saetre G-P (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol Ecol 11(3):603–612

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintela M, Berlin S, Wang B, Oglund HJ (2010) Genetic diversity and differentiation among Lagopus lagopus populations in Scandinavia and Scotland: evolutionary significant units confirmed by SNP markers. Mol Ecol 19(12):2380–2393

    Article  CAS  PubMed  Google Scholar 

  • Qu WM, Liang N, Wu ZK, Zhao YG, Chu D (2020) Minimum sample size for invasion genomics: empirical investigation in an invasive whitefly. Ecol Evol 10(1):38–49

    Article  PubMed  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 2021

  • Rambaut A, Drummond AJ, Xie D et al (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol 67(5):901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razgour O, Forester B, Taggart JB, Manel S (2019) Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci USA 116(21):10418–10423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Ritter CD, Ribas CC, Menger J, Borges SH, Bacon CD, Metzger JP, Cornelius C (2021) Landscape configuration of an Amazonian island-like ecosystem drives population structure and genetic diversity of a habitat-specialist bird. Landsc Ecol 36(9):2565–2582

    Article  Google Scholar 

  • Sanchez-Azofeifa GA, Quesada M, Rodríguez JP et al (2005) Research priorities for neotropical dry forests. Biotropica 37(4):477–485

    Article  Google Scholar 

  • Sanchez-Azofeifa GA, Quesada M, Cuevas-Reyes P et al (2009) Land cover and conservation in the area of influence of the Chamela-Cuixmala biosphere reserve, Mexico. For Ecol Manag 258(6):907–912

    Article  Google Scholar 

  • Sanchez-Azofeifa A, Powers JS, Fernandes GW, Quesada M (2013) Tropical dry forests in the Americas: ecology, conservation, and management, 1st edn. CRC Press, Boca Raton, p 556

    Book  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation—a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Schlaepfer DR, Braschler B, Rusterholz HP, Baur B (2018) Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9(10):1–17

    Article  Google Scholar 

  • Sekercioglu ÇH, Loarie SR, Oviedo-Brenes F et al (2015) Tropical countryside riparian corridors provide critical habitat and connectivity for seed-dispersal forest birds in a fragmented landscape. J Ornithol 156:343–353

    Article  Google Scholar 

  • Serrano-Rodríguez A, Escalona-Segura G, Rodríguez AG et al (2022) Effects of anthropogenic habitat fragmentation on the genetic connectivity of the threatened and endemic Campylorhynchus yucatanicus (Aves, Trogloditydae) in the Yucatan Peninsula. Mexico Divers 14:1108

    Google Scholar 

  • Seutin G (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Soberanes-González CA, Arizmendi MC, Schulenberg TS (2020) Sinaloa Wren (Thryophilus sinaloa), version 1.0. In: Schulenberg TS (ed) Birds of the world online. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DJX, Chattopadhyay B, Garg KM et al (2018) Novel genome and genome-wide SNPs reveal early fragmentation effects in an edge-tolerant songbird population across an urbanized tropical metropolis. Sci Rep 8:12804

    Article  PubMed  PubMed Central  Google Scholar 

  • Termignoni-García F, Jaramillo-Correa JP, Chable-Santos J et al (2017) Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Mol Ecol 26(17):4483–4496

    Article  PubMed  Google Scholar 

  • Thatte P, Joshi A, Vaidyanathan S et al (2018) Maintaining tiger connectivity and minimizing extinction into the next century: insights from landscape genetics and spatially-explicit simulations. Biol Conserv 218:181–191

    Article  Google Scholar 

  • Thomas CD, Gilligham PK (2015) The performance of protected areas for biodiversity under climate change. Biol J Linn Soc 115(3):718–730

    Article  Google Scholar 

  • Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94(2):133–142

    Article  Google Scholar 

  • Tremblay MA, St. Clair C (2009) Factors affecting the permeability of transportation and riparian corridors to the movement of songbirds in an urban landscape. J Appl Ecol 46(6):1314–1322

    Article  Google Scholar 

  • van Etten J (2017) R package gdistance: distances and routes on geographical grids. J Stat Softw 76(13):1–21

    Google Scholar 

  • van Rees CB, Reed JM, Wilson RE, Underwood JG, Sonsthagen SA (2018) Landscape genetics identifies streams and drainage infrastructure as dispersal corridors for an endangered wetland bird. Ecol Evol 8(16):8328–8343

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan HY, Cushman SA, Ganey JL (2018) Habitat fragmentation reduces genetic diversity and connectivity of the Mexican spotted owl: a simulation study using empirical resistance models. Genes 9(8):403

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3):1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright S (1943) Isolation by Distance. Genetics 28:114–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yumnam B, Jhala YV, Qureshi Q et al (2014) Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11):e111207

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. González-Rodríguez, Y. Rico, R. Hernández-Guzmán, R. Pérez-Rodríguez for providing useful comments on previous versions of the manuscript; L. Zamudio-Beltrán, V. González, M. Mejía, S. Covarrubias, U. Alejandre, A. Sánchez and A. Ceja for field assistance as well as Katherine Renton and the staff of the “Estación de Biología Chamela” (UNAM) for their logistic support; A. K. Howard from the BadDNA@UGA facility for processing and sequencing DNA samples; S. Covarrubias, V. Piñeros, L. Zamudio-Beltrán, J. Pérez-Alquicira, for assistance with genomic analyses; A. Flores-Manzanero for ResistanceGA support; C. Gutiérrez-Rodríguez and E. Villafán for their help using the Huitzilin cluster at INECOL; and M. Mejía for Fig. 1 elaboration. This study constitutes partial fulfillment of Andreia Malpica’ doctoral degree (Programa Institucional de Doctorado en Ciencias Biológicas) at the UMSNH.

Funding

Our research was funded by the Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT, https://conacyt.mx) through project grant PDCPN 2015-1250 to CG and by a doctoral scholarship (371634) to AM; and by the American Ornithological Society (Alexander Wetmore Memorial Research Award) to AM.

Author information

Authors and Affiliations

Authors

Contributions

AM and CG conceived the ideas, designed the methodology and collected the data. AM and CG led the manuscript conceptualization and data analysis. AM wrote the original draft. Both authors reviewed, edited and gave final approval for publication.

Corresponding author

Correspondence to Clementina González.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All sampling activities were adhered to the guidelines on the use of wild birds in research formulated by the Ornithological Council, and with the permission of Mexico’s Secretaría de Medio Ambiente y Recursos Naturales, Subsecretaría de Gestión para la Protección Ambiental, Dirección General de Vida Silvestre (permit numbers: SGPA/DGVS/10390/17 and SGPA/DGVS/05374/19).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malpica, A., González, C. Landscape anthropization explains the genetic structure of an endemic Mexican bird (Thryophilus sinaloa: Troglodytidae) across the tropical dry forest biodiversity hotspot. Landsc Ecol 38, 3249–3268 (2023). https://doi.org/10.1007/s10980-023-01777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01777-w

Keywords

Navigation