Skip to main content
Log in

Climate change and climate niche shift equally attribute to the northwest range expansion of Asian house rats under intensified human activities

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The earth is experiencing accelerated global change which has significantly altered the range distribution of species which would bring serious ecological problems, but the distinctive roles of climate change, human activity, and climate niche shift in the range shift of species have been rarely quantified, especially in the spatial-temporal scale.

Objectives

In this study, we quantified the roles of climate change, human activity and climate niche shift on the range expansion of Asian house rates in China and Asia.

Methods

By using historical records from literature, we examined associations of the range shift of Asian house rats with human density, air temperature, precipitation, and climate niche shift from 1920 to 2021 in its native and invaded regions in China and Asia.

Results

We found that Asian house rats showed an obvious range expansion from the southeast (warm and wet) to the northwest (cold and dry) of China since 1980. The first observation probability of Asian house rats in a place of China showed a significant positive association with an increase in air temperature and human population density, but a non-significant association with precipitation. Climate niche shift had a larger impact (~ 50%) on sites in the newly invaded areas than that (< 10%) in the native areas.

Conclusions

Our study indicates that under intensified human activities, both climate change and climate niche shift equally attribute to the northwest expansion of Asian house rats during the past few decades. Our results provide novel insights into the key factors and mechanisms in shaping range shift of animals, and significant implications for predicting and managing the range shift of species under accelerated global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supporting information.

References

  • Antão LH, Weigel B, Strona G, Hällfors M, Kaarlejärvi E, Dallas T et al (2022) Climate change reshuffles northern species within their niches. Nat Clim Change 12:587–592

    Article  Google Scholar 

  • Bai DF, Chen PJ, Atzeni L, Lhaba C, Li Q, Shi K (2018) Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool Res 39:373–386

    PubMed  PubMed Central  Google Scholar 

  • Bai DF, Wan XR, Li GL, Guo YW, Shi DZ, Zhang ZB (2022a) Factors influencing range contraction of a rodent herbivore in a steppe grassland over the past decades. Ecol Evol 12:e8546

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai DF, Wan XR, Zhang L, Campos-Arceiz A, Wei FW, Zhang ZB (2022b) The recent asian elephant range expansion in Yunnan, China, is associated with climate change and enforced protection efforts in human-dominated landscapes. Front Ecol Evol 10:889077

    Article  Google Scholar 

  • Brown JH, Ernest SKM (2002) Rain and rodents: complex dynamics of desert consumers: although water is the primary limiting resource in desert ecosystems, the relationship between rodent population dynamics and precipitation is complex and nonlinear. Bioscience 52:979–987

    Article  Google Scholar 

  • Castellanos-Frías E, García N, Virgós E (2018) Assessment of the effect of climate changes in the late pleistocene and holocene on niche conservatism of an arvicolid specialist. Sci Rep-UK 8:9780

    Article  Google Scholar 

  • Chen I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 1024:17–20

    Google Scholar 

  • Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X et al (2021) Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 30:6596–6610

    Article  CAS  PubMed  Google Scholar 

  • Chen ST, Li YR, Pan W, Wang WL, Jin FJ (2022) Evolution of China’s overland transportation dominance and its economic effect: a county-level analysis. Acta Geogr Sin 77:1937–1952

    Google Scholar 

  • Chen JJ, Xu Q, Wang T, Meng FF, Li ZW, Fang LQ, Liu W (2022a) A database of diversity and distribution of rodents and shrews in China. Sci Data 9:34

    Article  Google Scholar 

  • Crees JJ, Carbone C, Sommer RS, Benecke N, Turvey ST (2016) Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene. Proc Roy Soc B-Biol Sci 283:20152152

    Article  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B, Breiner FT, d’Amen M, Randin C et al (2017) Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787

    Article  Google Scholar 

  • Di Febbraro M, Menchetti M, Russo D, Ancillotto L, Aloise G, Roscioni F et al (2019) Integrating climate and land-use change scenarios in modelling the future spread of invasive squirrels in Italy. Divers Distrib 25:644–659

    Article  Google Scholar 

  • Di Marco M, Santini L (2015) Human pressures predict species’ geographic range size better than biological traits. Global Change Biol 21:2169–2178

    Article  Google Scholar 

  • Di Marco M, Pacifici M, Maiorano L, Rondinini C (2021) Drivers of change in the realised climatic niche of terrestrial mammals. Ecography 44:1–11

    Article  Google Scholar 

  • Dozières A, Pisanu B, Kamenova S, Bastelica F, Gerriet O, Chapuis J-L (2015) Range expansion of Pallas’s squirrel (Callosciurus erythraeus) introduced in southern France: habitat suitability and space use. Mammal Biol 80:518–526

    Article  Google Scholar 

  • Goldewijk K, Beusen KA, Doelman J, Stehfest S (2017) Anthropogenic land-use estimates for the Holocene, HYDE 3.2. Earth Syst Sci Data. https://doi.org/10.17026/dans-25g-gez3

    Article  Google Scholar 

  • Guo HL, Teng HJ, Zhang JH, Zhang JX, Zhang YH (2017) Asian house rats may facilitate their invasive succuss through suppressing brown rats in chronic interaction. Front Zool 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, Li G, Liu J, Wang J, Lu L, Liu Q (2019) Dispersal route of the asian house rat (Rattus tanezumi) on mainland China: insights from microsatellite and mitochondrial DNA. BMC Genet 20:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  • He JX, Yan C, Holyoak M, Wan XR, Ren GY, Hou YF, Xie Y, Zhang ZB (2018) Quantifying the effects of climate and anthropogenic change on regional species loss in China. PLoS ONE 13:1–12

    Article  Google Scholar 

  • Heaney L, Molur S (2016) Rattus tanezumi (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T19366A115149780.

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2022) dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo. Accessed 2022

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 106:19659–19665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YF, Jiang XC (2008) A survey of the asian house rat (Rattus tanezumi) in Shijiazhuang District, Hebei Province from 2004 to 2007. Chin J Vector Biol Control 19:125

    Google Scholar 

  • Htwe NM, Singleton GR, Johnson DE (2019) Interactions between rodents and weeds in a lowland rice agro-ecosystem: the need for an integrated approach to management. Integr Zool 14:396–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang JG (1994) Study on biological characteristics of Rattus flavipectus. China Plant Prot 6:12

    Google Scholar 

  • IPCC (2022) Summary for policymakers. Climate change 2022: impacts, adaptions and vulnerability contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang ZK, Li BJ, Wu GH, Ding LY, Ma BY, Wang L (2013) Surveillance, prevention and control of Tsutsugamushi disease and chigger mite. Chin J Hyg Insectic Equip 19:100–103

    Google Scholar 

  • Jones CR, Lorica RP, Villegas JM, Ramal AF, Horgan FG, Singleton GR, Stuart AM (2016) The stadium effect: rodent damage patterns in rice fields explored using giving-up densities. Integr Zool 12:438–445

    Article  Google Scholar 

  • Jourdan J, Riesch R, Cunze S (2021) Off to new shores: climate niche expansion in invasive mosquitofish (Gambusia spp). Ecol Evol 11:18369–18400

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupa JJ, Haskins KE (1996) Invasion of the meadow vole (Microtus pennsylvanicus) in southeastern Kentucky and its possible impact on the southern bog lemming (Synaptamys cooperi). Am Midl Nat 135:14–22

    Article  Google Scholar 

  • Leirs H (1999) Populations of African rodents: models and the real world. In: Hinds LA, Liers H, Zhang ZB (eds) Ecologically-based management of rodent pests. Australian Centre for International Agriculture Research, Canberra, pp 388–408

    Google Scholar 

  • Leonardi M, Boschin F, Boscato P, Manica A (2022) Following the niche: the differential impact of the last glacial maximum on four European ungulates. Commun Biol 5:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Li SJ, Zhang CC, Li XW, Tian KC, Tang GP, Wang DM et al (2012) Molecular typing of Leptospira interrogans strains isolated from Rattus tanezumi in Guizhou Province, Southwest of China. Biomed Environ Sci 25:543–548

    Google Scholar 

  • Li YM, Liu X, Li XP, Petitpierre B, Guisan A (2014) Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Global Ecol Biogeogr 23:1094–1104

    Article  Google Scholar 

  • Liu H, Ye Q, Wiens JJ (2020) Climatic-niche evolution follows similar rules in plants and animals. Nat Ecol Evol 4:753–763

    Article  PubMed  Google Scholar 

  • Liu YY, Yao LS, Ci Y, Cao XM, Zhao MH, Li Y, Zhang XL (2021) Genetic differentiation of geographic populations of Rattus tanezumi based on the mitochondrial cytb gene. PLoS ONE 16:e0248102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZH, Mowery MA, Cheng XL, Yang Q, Hu JH, Andrade MCB (2022) Realized niche shift of an invasive widow spider: drivers and impacts of human activities. Front Zool 19:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Luque-Larena JJ, Mougeot F, Vinuela J, Jareo D, Arroyo L, Lambin X, Arroyo B (2013) Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol 14:432–441

    Article  Google Scholar 

  • Lustenhouwer N, Parker IM (2022) Beyond tracking climate: niche shifts during native range expansion and their implications for novel invasions. J Biogeogr 49:1481–1493

    Article  Google Scholar 

  • Mahmoudi A, Kryštufek B, Sludsky A, Schmid BV, Almeida A, Xu L et al (2021) Plague reservoir species throughout the world. Integr Zool 16:820–833

    Article  CAS  PubMed  Google Scholar 

  • Marsh ACW, Poulton S, Harris S (2001) The yellow-necked mouse Apodemus flavicollis in Britain: status and analysis of factors affecting distribution. Mammal Rev 31:203–227

    Google Scholar 

  • McCain CM, King SRB, Szewczyk TM (2021) Unusually large upward shifts in cold-adapted, montane mammals as temperature warms. Ecology 102:e03300

    Article  PubMed  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Article  CAS  PubMed  Google Scholar 

  • Myers P, Lundrigan BL, Hoffman SMG, Haraminac AP, Seto SH (2009) Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Global Change Biol 15:1434–1454

    Article  Google Scholar 

  • Pacifici M, Rondinini C, Rhodes JR, Burbidge AA, Cristiano A, Watson JEM et al (2020) Global correlates of range contractions and expansions in terrestrial mammals. Nat Commun 11:2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi MI, Terry RC, Rickart EA, Rowe RJ (2020) Testing climate tracking of montane rodent distributions over the past century within the Great Basin ecoregion. Glob Ecol Conserv 24:e01238

    Google Scholar 

  • Peng SZ, Ding YX, Liu WZ, Li Z (2019) 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst Sci Data 11:1931–1046

    Article  Google Scholar 

  • Phillips SJ (2021) Maxnet: fitting “maxent” species distribution models with “glmnet”. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet. Accessed 2021

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Puckett EE, Park J, Combs M, Blum MJ, Bryant JE, Caccone A et al (2016) Global population divergence and admixture of the brown rat (Rattus norvegicus). P Roy Soc B-Biol Sci 283:20161762

    Google Scholar 

  • Qin CY (1991) On the faunistics and regionalization of glires in Ningxia Autonomous Region, China. Acta Theriol Sinica 11:143–151

    Google Scholar 

  • Rolland J, Silvestro D, Schluter D, Guisan A, Broennimann O, Salamin N (2018) The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat Ecol Evol 2:459–464

    Article  PubMed  Google Scholar 

  • Rowe KC, Rowe KMC, Tingley MW, Koo MS, Patton JL, Conroy CJ et al (2015) Spatially heterogeneous impact of change on small mammals of montane California. Proc Roy Soc B-Biol Sci 282:20141857

    Article  Google Scholar 

  • Roy-Dufresne E, Logan T, Simon JA, Chnura GL, Millien V (2013) Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of lyme disease. PLoS ONE 8:e80724

    Article  PubMed  PubMed Central  Google Scholar 

  • Sales LP, Galetti M, Carnaval A, Monsarrat S, Svenning J-C, Pires MM (2022) The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Global Change Biol 28:3683–3693

    Article  CAS  Google Scholar 

  • Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51:408–418

    Article  Google Scholar 

  • Shou ZH (1962) Chinese economical animal fauna—Therian. Science Press, Beijing, pp 242–246

    Google Scholar 

  • Sillero N, Ribeiro-Silva J, Arenas-Castro S (2022) Shifts in climatic realised niches of Iberian species. Oikos. https://doi.org/10.1111/oik.08505

    Article  Google Scholar 

  • Singleton GR, Redhead TD (1990) Structure and biology of house mouse populations that plague irregularly: an evolutionary perspective. Biol J Linn Soc 41:285–300

    Article  Google Scholar 

  • Slabach BL, Krupa JJ (2018) Range expansion of Sigmodon hispidus (Hispid Cotton Rat) into reclaimed coal surface-mines in Southeastern Kentucky. Southeast Nat 17:84–89

    Article  Google Scholar 

  • Smith AB (2022) enmSdmX: Species distribution modeling and ecological niche modeling. https://CRAN.R-project.org/package=enmSdmX. Accessed 2022

  • Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci USA 106(2):19637–19643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torre I, Gracia-Quintas L, Arrizabalaga A, Baucells J, Diaz M (2015) Are recent changes in the terrestrial small mammal communities related to land use change? A test using pellet analyses. Ecol Res 30:813–819

    Article  Google Scholar 

  • Varzinczak LH, Moura MO, Passos FC (2019) Shifts to multiple optima underlie climatic niche evolution in New World phyllostomid bats. Biol J Linn Soc 128:1008–1020

    Article  Google Scholar 

  • Walsh LL, Tucker PK (2018) Contemporary range expansion of the Virginia opossum (Didelphis virginiana) impacted by humans and snow cover. NRC Res Press 96:107–115

    Google Scholar 

  • Walther G-R, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc Roy Soc B-Biol Sci 272:1427–1432

    Article  Google Scholar 

  • Wan XR, Zhang ZB (2017) Climate warming and humans played different roles in triggering late quaternary extinctions in east and west Eurasia. Proc Roy Soc B-Biol Sci 284:20162438

    Article  Google Scholar 

  • Wan XR, Jiang GS, Yan C, He FL, Wen RS, Gu JY et al (2019) Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals. Proc Natl Acad Sci USA 116:19001–19008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan XR, Cheng CY, Bai DF, Zhang ZB (2023) Ecological impacts of climate change and adaption strategies. Bull Chin Acad Sci 38(3):518–527

    Google Scholar 

  • Wang SB, Yang GY (1983) Rodent fauna of Xinjiang. Xinjiang Prople’s Publishing House, Wulimuqi, pp 123–124

    Google Scholar 

  • Wang TZ, Zhou XZ, Zhang ST (1963) Report on investigation of rodents in Xian. Chin J Zool 6:62–65

    Google Scholar 

  • Wei B, Liu LS, Gu CJ, Yu HB, Zhang YL, Zhang BH et al (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodivers Sci 30:21443

    Article  Google Scholar 

  • White TA, Lundy MG, Montgomery WI, Montgomery S, Perkins SE, Lawton C et al (2012) Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biol Invasions 14:2203–2215

    Article  Google Scholar 

  • Wu XJ (1986) A preliminary investigation on the reproductivity of Rattus flavipectus and Rattus norvegicus in Central Fujian. Chin J Rodent Control 2:38–40

    Google Scholar 

  • Wu JY, Li GH (1982) A report on the mammals of Ankang region, Shaanxi Province. Zool Res 3:59–68

    CAS  Google Scholar 

  • Wu GH, Wang ZC, Jiang ZK, Zhen YJ, Wang L, Ding LY et al (2012) Surveillance, prevention and control of haemorrhagic fever with renal syndrome and rodent. Chin J Hyg Insectic Equip 18:370–373

    Google Scholar 

  • Xiang JW, Zhang LP, Deng Y, She DX, Zhang Q (2021) Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Eng J Wuhan Univ 54:46–57

    Google Scholar 

  • Xu L, Stige LC, Leirs H, Neerinckx S, Gage KL, Yang RF et al (2019) Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the third pandemic. Proc Natl Acad Sci USA 16:11833–11838.

    Article  Google Scholar 

  • Yan H, Liu SY, Qi SX, Li Q (2022) Distribution and migration of Rattus tanezumi. J Med Control 38:463–466

    Google Scholar 

  • Yang ZX, Jin X, Liu J, Zhen YL, Lei BH, Pan SC et al (2011) Analysis of monitoring results of rural rodents in Guizhou province from 1984 to 2010. J Agric 1:11–17

    Google Scholar 

  • Zhang MW, Guo C, Wang Y, Hu ZJ, Chen AG (2000a) The buff-breasted rats (Rattus flavipectus) in China. Zool Res 21:487–497

    Google Scholar 

  • Zhang MW, Chen AG, Wang Y, Guo C, Liu HF, Li B (2000b) The biological characteristics of the buff-breasted rats (Rattus flavipectus) in Yangtse valley in China. Acta Theriol Sinica 20:200–211

    CAS  Google Scholar 

  • Zhang Z, Pech R, Davis S, Shi DZ, Wan XR, Zhong WQ (2003) Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt’s voles Microtus brandti in Inner Mongolia. China Oikos 100:299–310.

    Article  Google Scholar 

  • Zhang D, Wan XR, Bai DF, Wang ZY, Guo YW, Zhang Z (2023) Factors affecting recent population decline and range contraction of the greater long-tailed hamster in China. Wildl Res. https://doi.org/10.1071/WR22072

    Article  Google Scholar 

  • Zhao CS, Wu XL, Qu BQ, Liu JM, Zhang SS, Hou XL (1989) An investigation of rodents in Shandong Province. Chin J Rodent Control 5:216–221

    Google Scholar 

  • Zheng T, Zhang YM (1990) The fauna and geographical division on glires of Gansu Province. Acta Theriol Sinica 10:137–144

    Google Scholar 

  • Zou B, Wang TL, Ning ZD, Niu S (1992) The buff-breasted rat population was found in Linfen, Shanxi. Plant Prot 3:51

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Major Program of National Natural Science Foundation of China (32090021), grants from Chinese Academy of Sciences (Grant No. KFJ-STS-ZDTP-2021-002; ANSOCR- KP-2020-08), a grant from Ministry of Science and Technology (2019FY100300), and a grant from the National Natural Science Foundation of China (32070460). Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022081). The Young Elite Scientists Sponsorship Program by CAST and ISZS (2021QNRC001, ISZS-YESS Program).

Funding

This work was founded by Major Program of National Natural Science Foundation of China (32090021), grants from Chinese Academy of Sciences (Grant No. KFJ-STS-ZDTP-2021-002; ANSOCR- KP-2020-08), a grant from Ministry of Science and Technology (2019FY100300), and a grant from the National Natural Science Foundation of China (32070460). Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022081). The Young Elite Scientists Sponsorship Program by CAST and ISZS (2021QNRC001, ISZS-YESS Program).

Author information

Authors and Affiliations

Authors

Contributions

ZZ designed the study, DB, XW and ZW collected data, DB processed and analyzed the data, DB and ZZ wrote and revised the manuscript. All authors gave final approval for publication.

Corresponding author

Correspondence to Zhibin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13,207 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Wan, X., Wang, Z. et al. Climate change and climate niche shift equally attribute to the northwest range expansion of Asian house rats under intensified human activities. Landsc Ecol 38, 3027–3044 (2023). https://doi.org/10.1007/s10980-023-01773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01773-0

Keywords

Navigation