Skip to main content
Log in

Contrasting effects of wild and domestic ungulates on fine-scale responses of vegetation to climate and herbivory

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Wild ungulates and livestock modify a large range of vegetation patterns and processes at the landscape scale. However, we still lack studies that address how changes in herbivores' type and management can determine small-scale ecosystem functioning.

Objectives

We compared landscape vegetation processes within a traditional livestock grazing (transhumant) and a system consisting exclusively of wild ungulates. We also investigated methodological approaches to map very fine spatial-scale changes in vegetation structure and functioning over time in a mountainous Mediterranean system (Iberian Peninsula).

Methods

We performed different UAV flights per season over exclusion fences, within these two long-term grazing contexts. Later, we processed images to obtain spatially explicit data on vegetation structure (vegetation cover and mean vegetation patch area) and vegetation greenness (NDVI).

Results

Very high spatial-resolution images provided key information on the spatial distribution and seasonal oscillation of small vegetation patches. Mean annual NDVI showed similar values in both grazing contexts albeit seasonal and annual differences in NDVI between grazed and ungrazed areas. Vegetation cover remained rather constant across seasons but differed between grazing contexts and fencing. The mean vegetation patch area changed seasonally according to the grazing context, without significant differences in mean annual values in fenced and non-fenced areas.

Conclusions

Accurate image classification helped to uncover differences in vegetation functioning in presence of wild ungulates and livestock. Multi-temporal studies at this fine-scale level improve the detection of ephemeral vegetation patches and increase the comprehension of cascade processes mediated by both ungulate groups, such as vegetation response to climate. The temporal and spatial vegetation patterns should be considered before the implementation of management measures, especially in landscapes within potential rewilding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  • Aguilera-Alcalá N, Arrondo E, Pascual-Rico R, Morales-Reyes Z, Gil-Sánchez JM, Donázar JA, Moleón M, Sánchez-Zapata JA (2022) The value of transhumance for biodiversity conservation: vulture foraging in relation to livestock movements. Ambio 51:1330–1342

    Article  PubMed  Google Scholar 

  • Alonso-Martínez L, Ibañez-Álvarez M, Brolly M, Burnside NG, Calleja JA, Peláez M, López-Sánchez A, Bartolomé J, Fanlo H, Lavín S, Perea R (2020) Remote mapping of foodscapes using sUAS and a low cost BG-NIR sensor. Sci Total Environ 718:137357

    Article  PubMed  Google Scholar 

  • Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9(8):1242–1256

    Article  CAS  Google Scholar 

  • Augustine DJ, Wigley BJ, Ratnam J, Kibet S, Nyangito M, Sankaran M (2019) Large herbivores maintain a two-phase herbaceous vegetation mosaic in a semi-arid savanna. Ecol Evol 9(22):12779–12788

    Article  PubMed  PubMed Central  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Article  Google Scholar 

  • Barbosa JM, Pascual-Rico R, Eguia Martínez S, Sánchez-Zapata JA (2020) Ungulates attenuate the response of Mediterranean mountain vegetation to climate oscillations. Ecosystems 23(5):957–972

    Article  CAS  Google Scholar 

  • Beguin J, Côté SD, Vellend M (2022) Large herbivores trigger spatiotemporal changes in forest plant diversity. Ecology 103:e3739

    Article  PubMed  Google Scholar 

  • Benavente A (2008) Flora y vegetacion: Parque Natural de las Sierras de Cazorla, Segura y Las Villas. Anuario Del Adelantamiento De Cazorla 50:149–153

    Google Scholar 

  • Biuw M, Jepsen JU, Cohen J, Ahonen SH, Tejesvi M, Aikio S, Wäli PR, Vindstad OPL, Markkola A, Niemelä P, Ims RA (2014) Long-term impacts of contrasting management of large ungulates in the Arctic tundra-forest ecotone: ecosystem structure and climate feedback. Ecosystems 17(5):890–905

    Article  CAS  Google Scholar 

  • Boelman NT, Holbrook JD, Greaves HE, Krause JS, Chmura HE, Magney TS, Vierling LA (2016) Airborne laser scanning and spectral remote sensing give a bird's eye perspective on arctic tundra breeding habitat at multiple spatial scales. Remote Sens Environ 184:337–349

  • Borowik T, Pettorelli N, Sönnichsen L, Jędrzejewska B (2013) Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur J Wildl Res 59(5):675–682

    Article  Google Scholar 

  • Carpio AJ, Apollonio M, Acevedo P (2021) Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm Rev 51(1):95–108

    Article  Google Scholar 

  • Charles GK, Porensky LM, Riginos C, Veblen KE, Young TP (2017) Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability: cattle. Ecol Appl 27(1):143–155

    Article  PubMed  Google Scholar 

  • Congedo L (2021) Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. J Open Source Softw 6(64):3172

    Article  Google Scholar 

  • Cunliffe AM, Assmann J, Daskalova NG, Kerby JT, Myers-Smith IH (2020) Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ Res Lett 15(12):125004

    Article  Google Scholar 

  • Desforges JP, Marques GM, Beumer LT, Chimienti M, Hansen LH, Pedersen SH, Schmidt NM, van Beest FM (2021) Environment and physiology shape Arctic ungulate population dynamics. Glob Change Biol 27(9):1755–1771

    Article  CAS  Google Scholar 

  • Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt H, Tiede D, Seifert T (2022) UAV-based forest health monitoring: a systematic review. Remote Sens 14(13):3205

    Article  Google Scholar 

  • Espín-Sánchez DE, Álvarez VR, Talavera JM, Marín RG (2018) Preliminary study of inversion temperature in the southeast Iberian Peninsular: the case of Hernán Perea Plateau. Pirineos 173

  • Espunyes J, Bartolomé J, Garel M, Galvez-Ceron A, Fernández Aguilar X, Colom-Cadena A, Calleja JA, Gasso D, Jarque L, Lavin S, Marco I (2019) Seasonal diet composition of Pyrenean chamois is mainly shaped by primary production waves. PLoS One 14(1):e0210819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-García V, Calvo L (2023) Landscape implications of contemporary abandonment of extensive sheep grazing in a globally important agricultural heritage system. Land 12(4):780

    Article  Google Scholar 

  • Fernández-Olalla M, Martínez-Jauregui M, Perea R, Velamazán M, San Miguel A (2016) Threat or opportunity? Browsing preferences and potential impact of Ammotragus lervia on woody plants of a Mediterranean protected area. J Arid Environ 129:9–15

    Article  Google Scholar 

  • Forbes ES, Cushman JH, Burkepile DE, Young TP, Klope M, Young HS (2019) Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct Ecol 33(9):1597–1610

    Article  Google Scholar 

  • Forsmoo J, Anderson K, Macleod CJ, Wilkinson ME, Brazier R (2018) Drone-based structure-from-motion photogrammetry captures grassland sward height variability. J Appl Ecol 55(6):2587–2599

  • Gaitán JJ, Bran D, Oliva G, Ciari G, Nakamatsu V, Salomone J, Ferrante D, Buono G, Massara V, Humano G, Celdrán D, Opazo W, Maestre FT (2013) Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol Indic 34:181–191

    Article  Google Scholar 

  • Gerlanc D, Kirby K (2021) _bootES: bootstrap confidence intervals on effect sizes_. R Package Version 1(2):1

    Google Scholar 

  • Giralt-Rueda JM, Santamaria L (2021) Complementary differences in primary production and phenology among vegetation types increase ecosystem resilience to climate change and grazing pressure in an iconic Mediterranean ecosystem. Remote Sens 13(19):3920

    Article  Google Scholar 

  • Gómez-Mercado F (2011) Vegetación y flora de la Sierra de Cazorla. Guineana 17:1–481

    Google Scholar 

  • Gómez-Zotano J, Alcántara-Manzanares J, Olmedo-Cobo JA, Martínez-Ibarra E (2015) La sistematización del clima mediterráneo: identificación, clasificación y caracterización climática de Andalucía (España). Revista De Geografía Norte Grande 61:161–180

    Article  Google Scholar 

  • Gorné LD, Díaz S (2022) Herbivory, intraspecific trait variability and back to herbivory. Oikos 2022(6):e09054

    Article  Google Scholar 

  • Grant K, Kreyling J, Beierkuhnlein C, Jentsch A (2017) Importance of seasonality for the response of a mesic temperate grassland to increased precipitation variability and warming. Ecosystems 20(8):1454–1467

    Article  Google Scholar 

  • Hamel S, Garel M, Festa-Bianchet M, Gaillard JM, Côté SD (2009) Spring Normalized Difference Vegetation Index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J Appl Ecol 46(3):582–589

    Article  Google Scholar 

  • Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J (2019) Landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42:1648–1657

    Article  Google Scholar 

  • Hevia V, Azcárate FM, Oteros-Rozas E, González JA (2013) Exploring the role of transhumance drove roads on the conservation of ant diversity in Mediterranean agroecosystems. Biodivers Conserv 22:2567–2581

    Article  Google Scholar 

  • Hijmans R (2022a) _raster: geographic data analysis and modeling_. R package version 3.5-29

  • Hijmans R (2022b) _terra: spatial data analysis_. R package version 1.6-7

  • Hughey LF, Shoemaker KT, Stewart KM, McCauley DJ, Cushman JH (2021) Effects of human-altered landscapes on a reintroduced ungulate: patterns of habitat selection at the rangeland-wildland interface. Biol Conserv 257:109086

    Article  Google Scholar 

  • Ibáñez-Alvarez M, Baraza E, Serrano E, Romero-Munar A, Cardona C, Bartolome J, Krumins JA (2022) Ungulates alter plant cover without consistent effect on soil ecosystem functioning. Agric Ecosyst Environ 326:107796

    Article  Google Scholar 

  • Jarque-Bascuñana L, Calleja JA, Ibañez M, Bartolomé J, Albanell E, Espunyes J et al (2022) Grazing influences biomass production and protein content of alpine meadows. Sci Total Environ 818:151771

    Article  PubMed  Google Scholar 

  • Johnson HE, Gustine DD, Golden TS, Adams LG, Parrett LS, Lenart EA, Barboza PS (2018) NDVI exhibits mixed success in predicting spatiotemporal variation in caribou summer forage quality and quantity. Ecosphere 9(10):e02461

    Article  Google Scholar 

  • Kassambara A (2020) ggpubr: 'ggplot2' based publication ready plots. R package version 0.4.0

  • Kéfi S, Rietkerk M, Roy M, Franc A, De Ruiter PC, Pascual M (2011) Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol Lett 14(1):29–35

    Article  PubMed  Google Scholar 

  • Kerby JT, Krivak-Tetley FE, Shikesho SD, Bolger DT (2022) Livestock impacts on an iconic Namib Desert plant are mediated by abiotic conditions. Oecologia 199(1):229–242

  • Keyserlingk J, de Hoop M, Mayor AG, Dekker SC, Rietkerk M, Foerster S (2021) Resilience of vegetation to drought: studying the effect of grazing in a Mediterranean rangeland using satellite time series. Remote Sens Environ 255:112270

    Article  Google Scholar 

  • Khorchani M, Nadal-Romero E, Lasanta T, Tague C (2021) Effects of vegetation succession and shrub clearing after land abandonment on the hydrological dynamics in the Central Spanish Pyrenees. CATENA 204:105374

    Article  Google Scholar 

  • Klosterman S, Melaas E, Wang J, Martinez A, Frederick S, O’Keefe J, Orwig DA, Wang Z, Sun Q, Schaaf C, Friedl M, Richardson AD (2018) Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agric for Meteorol 248:397–407

    Article  Google Scholar 

  • Kolstad AL, Snøan IB, Austrheim G, Bollandsås OM, Solberg EJ, Speed JDM (2022) Airborne laser scanning reveals increased growth and complexity of boreal forest canopies across a network of ungulate exclosures in Norway. Remote Sens Ecol Conserv 8(1):5–17

    Article  Google Scholar 

  • Laguna E, Carpio AJ, Vicente J, Barasona JA, Triguero-Ocaña R, Jiménez-Ruiz S et al (2021) The spatial ecology of red deer under different land use and management scenarios: protected areas, mixed farms and fenced hunting estates. Sci Total Environ 786:147124

    Article  CAS  PubMed  Google Scholar 

  • Li W, Buitenwerf R, Munk M, Bøcher PK, Svenning JC (2020) Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sens Environ 247:111953

    Article  Google Scholar 

  • Linnell JDC, Cretois B, Nilsen EB, Rolandsen CM, Solberg EJ, Veiberg V, Kaczensky P, Van Moorter B, Panzacchi M, Rauset GR, Kaltenborn B (2020) The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol Conserv 244:108500

    Article  Google Scholar 

  • Lohmann D, Tietjen B, Blaum N, Joubert DF, Jeltsch F (2012) Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing. J Appl Ecol 49(4):814–823

    Article  Google Scholar 

  • Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M et al (2017) Package ‘glmmtmb’. R Package Version 0.2.0

  • Manier DJ, Hobbs NT (2007) Large herbivores in sagebrush steppe ecosystems: livestock and wild ungulates influence structure and function. Oecologia 152(4):739–750

    Article  PubMed  Google Scholar 

  • Martínez TM (2002) Comparison and overlap of sympatric wild ungulate diet in Cazorla, Segura and Las Villas Natural Park. Pirineos 157:103–116

    Article  Google Scholar 

  • Mlambo R, Woodhouse IH, Gerard F, Anderson K (2017) Structure from motion (SfM) photogrammetry with drone data: a low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 8(3):68

  • Moreno-De Las Heras M, Saco PM, Willgoose GR, Tongway DJ (2011) Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecol Appl 21(7):2793–2805

    Article  PubMed  Google Scholar 

  • Müllerová J, Gago X, Bučas M, Company J, Estrany J, Fortesa J, Kent R (2021) Characterizing vegetation complexity with unmanned aerial systems (UAS)–A framework and synthesis. Ecol Indic 131:108156

  • Muñoz Sabater J (2019) ERA5-land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.68d2bb3. Accessed 19 Sep 2022

  • Murray BD, Webster CR, Bump JK (2013) Broadening the ecological context of ungulate–ecosystem interactions: the importance of space, seasonality, and nitrogen. Ecology 94(6):1317–1326

    Article  PubMed  Google Scholar 

  • Newman M, Mitchell FJG, Kelly DL (2014) Exclusion of large herbivores: long-term changes within the plant community. For Ecol Manag 321:136–144

    Article  Google Scholar 

  • Nishizawa K, Tatsumi S, Kitagawa R, Mori AS (2016) Deer herbivory affects the functional diversity of forest floor plants via changes in competition-mediated assembly rules. Ecol Res 31(4):569–578

    Article  CAS  Google Scholar 

  • Odadi WO (2011) African wild ungulates compete with or facilitate cattle depending on season (Science (1753)). Science 334(6056):594

    CAS  Google Scholar 

  • Oteros-Rozas E, Ontillera-Sánchez R, Sanosa P, Gómez-Baggethun E, Reyes-García V, González JA (2013) Traditional ecological knowledge among transhumant pastoralists in Mediterranean Spain. Ecol Soc 18(3)

  • Perea R, López-Sánchez A, Roig S (2016) The use of shrub cover to preserve Mediterranean oak dehesas: a comparison between sheep, cattle and wild ungulate management. Appl Veg Sci 19(2):244–253

    Article  Google Scholar 

  • Pringle RM, Young TP, Rubenstein DI, McCauley DJ (2007) Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proc Natl Acad Sci USA 104(1):193–197

    Article  CAS  PubMed  Google Scholar 

  • Prošek J, Šímová P (2019) UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int J Appl Earth Observ Geoinf 75:151–162

    Google Scholar 

  • QGIS DT (2022) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Ramirez JI, Jansen PA, den Ouden J, Goudzwaard L, Poorter L (2019) Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. For Ecol Manag 432:478–488

    Article  Google Scholar 

  • Räsänen A, Aurela M, Juutinen S, Kumpula T, Lohila A, Penttilä T, Virtanen T (2020) Detecting northern peatland vegetation patterns at ultra-high spatial resolution. Remote Sens Ecol Conserv 6(4):457–471

    Article  Google Scholar 

  • REDIAM (2012a) WMS Mapa del Modelo de distribución de los Pisos bioclimáticos de Andalucía. http://www.ideandalucia.es/catalogo/inspire/srv/api/records/62bbaf30b135eb8554eca858db4049c802089634

  • REDIAM (2012b) WMS Mapa de Ombrotipos a escala de detalle (1:10.000). http://www.ideandalucia.es/catalogo/inspire/srv/api/records/add4aba68fc2dbe828622a50c9b0baeb4598f70e

  • Regos A, Arenas-Castro S, Tapia L, Domínguez J, Honrado JP (2021) Using remotely sensed indicators of primary productivity to improve prioritization of conservation areas for top predators. Ecol Indic 125:107503

    Article  Google Scholar 

  • Ren Y, Zhu Y, Baldan D, Fu M, Wang B, Li J, Chen A (2021) Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Sci Rep 11(1):1–8

    Google Scholar 

  • Riginos C, Grace JB, Augustine DJ, Young TP (2009) Local versus landscape-scale effects of savanna trees on grasses. J Ecol 97(6):1337–1345

    Article  Google Scholar 

  • Royo AA, Kramer DW, Miller KV, Nibbelink NP, Stout SL (2017) Spatio-temporal variation in foodscapes modifies deer browsing impact on vegetation. Landsc Ecol 32(12):2281–2295

    Article  Google Scholar 

  • Rueda M, Rebollo S (2013) Contrasting impacts of different-sized herbivores on species richness of Mediterranean annual pastures differing in primary productivity. Oecologia 172(2):449–459

    Article  PubMed  Google Scholar 

  • San Miguel-Ayanz A, Perea García-Calvo A, Fernández-Olalla R (2010) Wild ungulates vs. extensive livestock. Looking back to face the future. Opt Meditérr 92:27–34

    Google Scholar 

  • Sanaei A, Ali A, Chahouki MAZ, Jafari M (2018) Plant coverage is a potential ecological indicator for species diversity and aboveground biomass in semi-steppe rangelands. Ecol Indic 93:256–266

    Article  Google Scholar 

  • Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A (2021) Quantifying plant-soil-nutrient dynamics in rangelands: fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens Environ 253:112223

    Article  Google Scholar 

  • Stavi I, Yizhaq H, Osem Y, Argaman E (2021) Positive impacts of livestock and wild ungulate routes on functioning of dryland ecosystems. Ecol Evol 11(20):13684–13691

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Du W (2017) Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands. GIScience Remote Sens 54(6):881–897

  • Svenning JC, Pedersen PBM, Donlan CJ, Ejrnæs R, Faurby S, Galetti M, Hansen DM, Sandel B, Sandom CJ, Terborgh JW, Vera FWM (2016) Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc Natl Acad Sci USA 113(4):898–906

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Correcher E, Sitters J, Wassen M, Brion N, Olde Venterink H (2019) Herbivore dung quality affects plant community diversity. Sci Rep 9(1):5675

    Article  PubMed  PubMed Central  Google Scholar 

  • Velamazán M, San Miguel A, Escribano R, Perea R (2017) Threatened woody flora as an ecological indicator of large herbivore introductions. Biodivers Conserv 26(4):917–930

    Article  Google Scholar 

  • Velamazán M, San Miguel A, Escribano R, Perea R (2018) Use of firebreaks and artificial supply points by wild ungulates: effects on fuel load and woody vegetation along a distance gradient. For Ecol Manag 427:114–123

    Article  Google Scholar 

  • Vuorinen EM, Austrheim G, Mysterud A, Gya R, Vandvik V, Grytnes JA, Speed JDM (2021) Functional traits of alpine plant communities show long-term resistance to changing herbivore densities. Ecosphere 12(12):e03887

    Article  Google Scholar 

  • Wang H, Liu H, Cao G, Ma Z, Li Y, Zhang F et al (2020) Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol Lett 23(4):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Zweifel-Schielly B, Kreuzer M, Ewald KC, Suter W (2009) Habitat selection by an Alpine ungulate: the significance of forage characteristics varies with scale and season. Ecography 32(1):103–113

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Paloma Prieto, David Cuerda and Francisco Martinez, and the Sierras de Cazorla, Segura, and Las Villas Natural Park for their support. This study forms part of the AGROALNEXT (2022/038) programme and was supported by MCIN/AEI/10.13039/501100011033 with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana. This study also forms part of the DIGITALPAST (TED2021-130005B-C21) project and was supported by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. This study also forms part of the TRASCAR (RTI2018-099609-B-C21) project and was supported by MCIN/AEI/10.13039/501100011033 with funding from European Regional Development Fund (ERDF). JMB was supported by Generalitat Valenciana with the program PlanGenT (CIDEGENT/2020/030).

Funding

This study forms part of the AGROALNEXT (2022/038) programme and was supported by MCIN/AEI/10.13039/501100011033 with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana. This study also forms part of the DIGITALPAST (TED2021-130005B-C21) project and was supported by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. This study also forms part of the TRASCAR (RTI2018-099609-B-C21) project and was supported by MCIN/AEI/10.13039/501100011033 with funding from European Regional Development Fund (ERDF). JMB was supported by Generalitat Valenciana with the program PlanGenT (CIDEGENT/2020/030).

Author information

Authors and Affiliations

Authors

Contributions

MV, JASZ and JMB contributed to the study conception and design. MV, EJ and JMB collected and processed the images and analyzed the data. All authors contributed to the writing process of the manuscript.

Corresponding author

Correspondence to M. Velamazán.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 292 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velamazán, M., Sánchez-Zapata, J.A., Moral-Herrero, R. et al. Contrasting effects of wild and domestic ungulates on fine-scale responses of vegetation to climate and herbivory. Landsc Ecol 38, 3463–3478 (2023). https://doi.org/10.1007/s10980-023-01676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01676-0

Keywords

Navigation