Skip to main content

Advertisement

Log in

Causes of vegetation synanthropisation in Central Spain

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Human action has a direct impact on vegetation. Numerous studies use different indicators to evaluate this human influence in different regions. However, there are fewer studies that analyse in detail anthropisation causes, and the degree of protection that is being given to the best-preserved patches of vegetation.

Objectives

This study firstly determines human alteration of vegetation through a synanthropisation index. Then, it responds to two questions: What contribution do different human activities have on vegetation synanthropisation? Do protected areas adequately preserve vegetation with reduced synanthropisation?

Methods

The study area included six provinces of Central Spain. A global synanthropisation index (ISG) including flora and vegetation, and six anthropisation indicators (population, agriculture, forestry, livestock, mining and reservoirs) were established, conducting a statistical treatment. Areas with the lowest ISG were overlaid with protected areas to determine their degree of inclusion. The proposed methodology can be applied in other geographical regions, and is integrative, allowing the incorporation of other similar indices and indicators.

Results

Average ISG value was 0.673; 58% of the area had high synanthropisation, 26% medium and 16% low. Multiple regression of ISG with anthropisation indicators was extremely significant. Agriculture would explain 63.7% of synathropisation, population 11.2%, forestry 8.8%, livestock 7.6%, dams 4.6% and mining 4.4%. Environmental protected areas included only 46.7% of vegetation plots with reduced synathropisation.

Conclusions

The main cause of vegetation synanthropisation was agriculture. Vegetation with low synathropisation should be preserved, but almost half of the detected plots were outside protected areas. The synanthropisation of vegetation should be considered in decision-making on territorial planning and environmental assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abel-Schaad D, López-Sáez JA (2013) Vegetation changes in relation to fire history and human activities at the Peña Negra mire (Bejar Range, Iberian Central Mountain System, Spain) during the past 4000 years. Veget Hist Archaeobot 22:199–214

    Article  Google Scholar 

  • AEMET (2022a) AEMET OpenData. Agencia Estatal de Meteorología. https://opendata.aemet.es/. Accessed 10 March 2022a

  • AEMET (2022b) Informe sobre el estado del clima de España 2021. Agencia Estatal de Meteorología, Madrid

    Google Scholar 

  • Anderson JE (1991) A conceptual-framework for evaluating and quantifying naturalness. Conserv Biol 5(3):347–352

    Article  Google Scholar 

  • Angermeier PL (2000) The natural imperative for biological conservation. Conserv Biol 14(2):373

    Article  Google Scholar 

  • Arco MA (2020) Los “años del hambre”: historia y memoria de la posguerra franquista. Marcial Pons, Madrid

    Google Scholar 

  • Ariño E, Díaz PC (1999) La economía agraria de la Hispania Romana: colonización y territorio. Stud Hist Hist Antig 17:153–192

    Google Scholar 

  • Bermúdez-de-Castro JM, Martinón-Torres M, Martín-Francés L, Modesto-Mata M, Martínez-de-Pinillos M, García C, Carbonell E (2017) Homo antecessor: the state of the art eighteen years later. Quat Int 433(1):22–31

    Article  Google Scholar 

  • Bilbao LM, Fernández E (1986) Exportación de lanas, trashumancia y ocupación del espacio en Castilla durante los siglos XVI, XVII y XVIII. In: García P, Sánchez JM (eds) Contribución a la historia de la trashumancia en España. Ministerio de Agricultura Pesca y Alimentación, Madrid, pp 343–358

    Google Scholar 

  • Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Bonet A (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J Arid Environ 56(2):213–233.

    Article  Google Scholar 

  • Bradshaw RHW (2004) Past anthropogenic influence on European forest and some possible genetic consequences. For Ecol Manag 197(1–3):203–212

    Article  Google Scholar 

  • Carrión JS, Andrade A, Bennett KD, Munuera M, Navarro C (2001) Crossing forest thresholds. Inertia and collapse in a Holocene sequence from south-central Spain. Holocene 11:635–653

    Article  Google Scholar 

  • CM (2022) Espacios naturales protegidos. Montes del catálogo de utilidad pública. Comunidad de Madrid. https://datos.comunidad.madrid/catalogo/. Accessed 15 June 2022

  • CNIG (2022) Información geográfica de referencia. Centro Nacional de Información Geográfica. https://centrodedescargas.cnig.es/ Accessed 1 April 2022

  • Çolak AH, Rotherham ID, Çalikoglu M (2003) Combining ‘naturalness concepts’ with close-to-nature silviculture. Forstwiss Centralbl 122:421–431.

    Article  Google Scholar 

  • Connor SE, Vannière B, Colombaroli D, Anderson RS, Carrión JS, Ejarque A, Gil G, González-Sampériz P, Hoefer D, Morales-Molino C, Revelles J, Schneider H, van der Knaap WO, van Leeuwen JF, Woodbridge J (2019) Humans take control of fire-driven diversity changes in Mediterranean Iberia’s vegetation during the mid–late Holocene. Holocene 29(5):886–901

    Article  Google Scholar 

  • Costa M, Morla C, Sainz H (2005) Los bosques ibéricos, 4th edn. Una interpretación geobotánica, Planeta, Barcelona

    Google Scholar 

  • Dorado M, Valdeolmillos A, Ruiz-Zapata B (2001) Actividad humana y dinámica de la vegetación en la Sierra de Ávila (Sistema Central Español) desde el Bronce Medio. Polen 11:39–49.

  • Eitelberg DA, van Vliet J, Verburg PH (2015) A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob Change Biol 21:1236–1248.

    Article  Google Scholar 

  • Enríquez-de-Salamanca Á (2020) Human influence on the flora of the Spanish Central Range. Plant Biosyst 154(4):474–480.

    Article  Google Scholar 

  • Enríquez-de-Salamanca Á, Martín-Aranda RM, Díaz-Sierra R (2017) Potential of land use activities to offset road traffic greenhouse gas emissions in Central Spain. Sci Tot Environ 590–591:215–225.

    Article  Google Scholar 

  • Evans JD (1996) Straightforward statistics for the behavioral sciences. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Faliński JB (1966) Antropogeniczna roślinność Puszczy Białowieskiej jako wynik synantropizacji naturalnego kompleksu leśnego. Rozpr Uniw Warszawskiego 13:1–256

    Google Scholar 

  • Faliński JB (1975) Anthropogenic changes of the vegetation of Poland. Phytocoenosis 4(2):97–115

    Google Scholar 

  • Faliński JB (1986) Behaviour of natural forest under man’s activity Synanthropisation of the plant cover. In: Falinski JB (ed) Vegetation dynamics in temperate lowland primeval forests. Ecological studies in Bialowieza forest, Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4806-8_8

    Chapter  Google Scholar 

  • Franco-Múgica F, García-Antón M, Sainz-Ollero H (1998) Vegetation dyanmics and human impact in the Sierra de Guadarrama. Holocene 8:69–82

    Article  Google Scholar 

  • Franco-Múgica F, García-Antón M, Maldonado-Ruiz J, Morla-Juaristi C, Sainz-Ollero H (2001) The holocene history of pinus forests in the Spanish Northern Meseta. Holocene 11(3):343–358

    Article  Google Scholar 

  • García A (1996) La agonía de la Mesta y el hundimiento de las exportaciones laneras: un capítulo de la crisis económica del antiguo régimen en España. In: García P, Sánchez JM (eds) Contribución a la historia de la trashumancia en España. Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • García S, Bal MC, Allée P, García-Amorena I, Rubiales JM (2017) Holocene treeline history of a high-mountain landscape inferred from soil charcoal: the case of Sierra de Gredos (Iberian Central System, SW Europe). Quat Int 457:85–98

    Article  Google Scholar 

  • García-Martínez Í (2014) La neolitización de la Meseta Norte y de la alta y media cuenca del Ebro (España): premisas teóricas, análisis del registro y planteamiento de hipótesis. Zephyrus 73:83–107

    Article  Google Scholar 

  • GEHR (1994) Más allá de la “propiedad perfecta”. El proceso de privatización de los montes públicos españoles (1859–1926). Hist Agr 4(8):99–152

    Google Scholar 

  • Gómez C, Luque E (2006) Imágenes de un mundo rural: 1955–1980. Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • Gómez Sal A (2017) Patterns of vegetation cover shaping the cultural landscapes in the Iberian Peninsula. In: Loidi J (ed) The vegetation of the Iberian Peninsula Plant and Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-319-54867-8_10

    Chapter  Google Scholar 

  • González R (2017) Introducción a la Hispania visigoda. UNED, Madrid

    Google Scholar 

  • Hossain A, Krupnik TJ, Timsina J, Mahboob MG, Chaki AK, Farooq M, Bhatt R, Fahad S, Hasanuzzaman M (2020) Agricultural land degradation: Processes and problems undermining future food security. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan IA, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_2

    Chapter  Google Scholar 

  • IGME (2022) Mapa geológico. Instituto Geológico y Minero de España. https://info.igme.es/cartografiadigital/geologica/ Accessed 25 May 2022

  • INE (2022). Instituo Nacional de Estadística. https://www.ine.es/ Accessed 5 April 2022

  • Izco J (1984) Madrid verde. Instituto de Estudios Agrarios, Pesqueros y Alimentarios, Madrid

    Google Scholar 

  • Jalas J (1955) Hemerobe und hemechore Pflanzenarten. Ein terminologischer Reformversuch. Acta Soc Fauna Flora Fenn 72(11):1–15

    Google Scholar 

  • JCCM (2022a) Red de áreas protegidas de Castilla-La Mancha. Junta de Comunidades de Castilla-La Mancha. http://agricultura.jccm.es/inap/. Accessed 15 May 2022a

  • JCCM (2022b) Información de montes y vías pecuarias en Castilla-La Mancha. Junta de Comunidades de Castilla-La Mancha. http://agricultura.jccm.es/imovip/. Accessed 1 May 2022b

  • JCYL (2022a) Red de espacios naturales CyL. Junta de Castilla y León. https://idecyl.jcyl.es/ Accessed 15 May 2022a

  • JCYL (2022b) Montes CyL: montes de utilidad pública. Junta de Castilla y León. https://idecyl.jcyl.es/ Accessed 15 May 2022b

  • Kornaś J (1966) Influence of man and his economic activities on the vegetation of Poland. the synanthropic flora. In: Szafer W (ed) The vegetation of Poland. Pergamon Press, Oxford-Warszawa, pp 97–137

    Chapter  Google Scholar 

  • Kornaś J (1977) Analiza Flor Synatropijnych. Wiad Bot 21:85–91

    Google Scholar 

  • Kornaś J (1982) Man’s impact upon the flora: processes and effects. Memorabilia Zool 37:11–30

    Google Scholar 

  • Kornaś J (1983) Man’s impact upon the flora and vegetation in Central Europe. In: Holzner W, Werger MJA, Ikushima I (eds) Man’s impact on vegetation. W. Junk, The Hague, pp 277–286

    Chapter  Google Scholar 

  • Kornaś J (1990) Plants invasions in Central Europe: historical and ecological aspects. In: Di Castri F, Hansen AJ, Debussche M (eds) Biological invasions in Europe and the Mediterranean basin. Kluwer, Dodrecht. https://doi.org/10.1007/978-94-009-1876-4_2

    Chapter  Google Scholar 

  • Kotańska M, Buziak-Chmielowiec E, Dąbrowska A, Gladysz M, Jakielaszek A, Wójcik T (2015) Human impact on the plant cover of four villages in SE Poland. Steciana 19(2):115–121

    Article  Google Scholar 

  • Kowarik I (1988) Zum menschlichen Einfluss auf Flora und Vegetation. Theoretische Konzepte und ein Quantifizierungsansatz am Beispiel von Berlin (West). Landsch.entwickl. Umweltforsch 56:1–280

    Google Scholar 

  • Lanza R (2005) El ‘vecindario’ de 1683: una fuente inédita para el estudio de la población de la Corona de Castilla. Rev Hist Econ 23(2):335–369

    Google Scholar 

  • Łaska G (2015) Synanthropization of dendroflora near main roads in Białystok (NE Poland). Biodiv Res Conserv 38:9–24.

    Google Scholar 

  • Lionello P, Scarascia L (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Change 18:1481–1493.

    Article  Google Scholar 

  • López A (1992) Los montes públicos y las diversas vías de su privatización en el siglo XIX. Agric Soc 65:65–99

    Google Scholar 

  • López C, Espinosa J, Bengoa J (2009) Mapa de vegetación de Castilla y León. Síntesis 1:400.000 Junta de Castilla y León, Valladolid

    Google Scholar 

  • López-Sáez JA, Abel-Schaad D, Pérez-Díaz S, Blanco-González A, Alba-Sánchez F, Dorado M, Ruiz-Zapata B, Gil-García MJ, Gómez-González C, Franco-Múgica F (2014) Vegetation history, climate and human impact in the Spanish Central System over the last 9000 years. Quat Int 353:98–122.

    Article  Google Scholar 

  • López-Sáez JA, Pérez S, Alba F, Núñez S (2015) Paisaje cultural y paleoclimatología durante la edad del bronce de La Mancha. In: Mejias M, Benitez de Lugo L, López-Sáez JA, Esteban C (eds) Arqueología hidrogeología y medio ambiente en la Edad del Bronce de La Mancha la cultura de Las Motillas. IGME, Madrid

    Google Scholar 

  • López-Sáez JA, Serra-González C, Alba-Sánchez F, Robles-López S, Pérez-Díaz S, Abel-Schaad D, Glais A (2016) Exploring seven hundred years of transhumance, dynamic, fire and human activity through a historical mountain pass in central Spain. J Mt Sci 13:1139–1153.

    Article  Google Scholar 

  • Luelmo-Lautenschlaeger R, Blarquez O, Pérez-Díaz S, Morales-Molino C, López-Sáez JA (2019) The Iberian Peninsula’s burning heart–Long-term fire history in the Toledo Mountains (Central Spain). Fire 2:54.

    Article  Google Scholar 

  • Machado A (2004) An index of naturalness. J Nat Conserv 12:95–110.

    Article  Google Scholar 

  • Martínez-Dueñas WA (2010) INRA - índice integrado relativo de antropización: propuesta técnica-conceptual y aplicación. Intropica 5:45–54

    Google Scholar 

  • MITECO (2022a) Mapa forestal de España. Ministerio para la Transición Ecológica y el Reto Demográfico. https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/mfe.aspx. Accessed 3 May 2022a

  • MITECO (2022b) Espacios protegidos. Ministerio para la Transición Ecológica y el Reto Demográfico. https://www.miteco.gob.es/es/biodiversidad/temas/espacios-protegidos/ Accessed 3 May 2022b

  • Montiel C (2013) Reconstrucción del régimen de incendios del centro de España durante los últimos quinientos años. In: Montiel C (ed) Presencia histórica del fuego en el territorio. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid, pp 15–42

    Google Scholar 

  • Palmero-Iniesta M, Pino J, Pesquer L, Espelta JM (2021) Recent forest area increase in Europe: expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. Eur J for Res 140:793–805

    Article  Google Scholar 

  • Pardo F, Gil L (1997) La transformación del paisaje en la sierra pobre de Madrid. Influencia de la agricultura y ganadería en la extinción local de los pinares. Estud Geogr 58(228):397–423

    Article  Google Scholar 

  • Peinado M, Monje L, Martínez JM (2008) El paisaje vegetal de Castilla-La Mancha. Manual de geobotánica. Cuarto Centenario, Toledo

    Google Scholar 

  • Pemán J, Iriarte I, Lario FJ (2017) La restauración forestal de España: 75 años de una ilusión. Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Pizzolotto R, Brandmayr P (1996) An index to evaluate land scape conservation state based on land-use pattern analysis and geographic information system techniques. Coenoses 11:37–44

    Google Scholar 

  • Popova EI (2021) Synanthropization and species diversityof floodplain ecosystems of the Ob-Irtysh basin, Russia. Acta Biol Sib 7:545–558

    Google Scholar 

  • Rahn C (2006) El toisón de oro español: producción y comercio de la lana en las épocas medieval y moderna. Junta de Castilla y León, Valladolid

    Google Scholar 

  • Resco P, Iglesias A, Bardají I, Sotés V (2016) Exploring adaptation choices for grapevine regions in Spain. Reg Environ Change 16:979–993.

    Article  Google Scholar 

  • Riera S (2006) Cambios vegetales holocenos en la región mediterránea de la Península Ibérica: ensayo de síntesis. Ecosistemas 15(1):17–30

    Google Scholar 

  • Rubiales JM, García-Amorena I, Génova M, Gómez-Manzaneque F, Morla C (2007) The Holocene history of highland pine forests in a submediterranean mountain: the case of Gredos mountain range (Iberian Central range, Spain). Quat Sci Rev 26:1759–1770.

    Article  Google Scholar 

  • Rüdisser J, Tasser E, Tappeiner U (2012) Distance to nature—A new biodiversity relevant environmental indicator set at the landscape level. Ecol Indic 15:208–216.

    Article  Google Scholar 

  • Ruiz M, Ruiz JP (1986) Ecological history of transhumance in Spain. Biol Cons 37:73–86

    Article  Google Scholar 

  • Ruiz B, Andrade A, Dorado M, Gil MJ, Franco F, López P, López-Sáez JA, Macías R, Arnanz AM, Uzquiano P (1997) Las transformaciones del ecosistema en la Comunidad de Madrid. In: López P (ed) El paisaje vegetal de la Comunidad de Madrid durante el Holoceno Final. Comunidad de Madrid, Madrid, pp 95–201

    Google Scholar 

  • Samoilenko V, Dibrova I, Osadchyi V, Vishnikina L (2018) Procedure of landscape anthropization extent modeling: implementation for Ukrainian physic-geographic taxons. J Environ Res Eng Manag 74(2):67–81

    Google Scholar 

  • Sánchez E (1998) La agricultura vaccea: ¿un topos literario? Ensayo De Valoración Mem Hist Antig 19(20):81–110

    Google Scholar 

  • Serrano D, Margalida A, Pérez-García JM, Juste J, Traba J, Valera F, Carrete M, Aihartza J, Real J, Mañosa S, Flaquer C, Garin I, Morales MB, Alcalde JT, Arroyo B, Sánchez-Zapata JA, Blanco G, Negro JJ, Tella JL, Ibañez C, Tellería JL, Hiraldo F, Donázar JA (2020) Renewables in Spain threaten biodiversity. Science 370(6522):1282–1283

    Article  PubMed  Google Scholar 

  • Sjörs H (1986) On the gradient from near-natural to man-made. Trans Bot Soc Edinburgh 45:77–84

    Article  Google Scholar 

  • Spyreas G (2019) Floristic Quality Assessment: a critique, a defense, and a primer. Ecosphere 10(8):e02825. https://doi.org/10.1002/ecs2.2825

    Article  Google Scholar 

  • Steinhardt U, Herzog F, Lausch A, Müller E, Lehmann S (1999) Hemeroby index for landscape monitoring and evaluation. In: Pykh YA, Hyatt DE, Lenz RJ (eds) Environmental indices—System analysis approach. EOLSS, Oxford, pp 237–254

    Google Scholar 

  • Sukopp H (1969) Der Einfluss des Menschen auf die Vegetation. Vegetatio 17:360–371

    Article  Google Scholar 

  • Sukopp H (1976) Dynamik und Konstanz in der Flora der Bundesrepublik Deutschland. In: Sukopp H, Trautmann W (eds) Veränderungen der Flora und Fauna in der Bundesrepublik Deutschland. Schr.reihe Veg.kd 10(1), pp: 9–26

  • Swink FA, Wilhelm GS (1994) Plants of the Chicago Region, 4th edn. Indiana Academy of Science, Indianapolis

    Google Scholar 

  • Taylor DM, Pedley HM, Davies P, Wright MW (1998) Pollen and mollusc records for environmental change in central Spain during the mid- and late Holocene. Holocene 8:605–612.

    Article  Google Scholar 

  • Thackway R, Lesslie R (2006) Reporting vegetation condition using the vegetation assets, states, and transitions (VAST) framework. Ecol Manag Restor 7:S53–S62.

    Article  Google Scholar 

  • Thackway R, Lesslie R (2008) Describing and mapping human-induced vegetation change in the Australian landscape. Environ Manage 42:572–590.

    Article  PubMed  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc Natl Acad Sci USA 96(11):5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valbuena-Carabaña M, López de Heredia U, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palyno 162(3):492–506

    Article  Google Scholar 

  • Valcheva M, Sopotlieva D, Meshinev T, Apostolova I (2019) Is penetration of non-psammophytes an underestimated threat to sand dunes?—A case study from western Pontic coast. J Coast Conserv 23(2):271–281.

    Article  Google Scholar 

  • Valladares F, Camarero JJ, Pulido F, Gil-Pelegrín E (2008) El bosque mediterráneo, un sistema humanizado y dinámico. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante, 2nd edn. Organismo Autónomo Parques Nacionales, Madrid, pp 13–15

    Google Scholar 

  • Van der Maarel E (1975) Man-made natural ecosystems in environmental management and planning. In: Van Dobben WH, Lowe-McConnell RH (eds) Unifying Concepts in Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1954-5_22

    Chapter  Google Scholar 

  • Vega LG, Cerdeño L, Córdoba B (1998) El origen de los mastines ibéricos. La trashumancia entre los pueblos prerromanos de la meseta. Complutum 9:117–135

    Google Scholar 

  • Walz U, Stein C (2014) Indicators of hemeroby for the monitoring of landscapes in Germany. J Nat Conserv 22:279

    Article  Google Scholar 

  • Watson AM (1983) Agricultural innovation in the early islamic world: the diffusion of crops and farming techniques, 700–1100. Cambridge University Press, Cambridge

    Google Scholar 

  • Westhoff V (1983) Man’s attitude towards vegetation. In: Holzner W, Werger MJA, Ikusima I (eds) Man’s impact on vegetation. W. Junk, The Hague, pp 7–24

    Chapter  Google Scholar 

  • Winter S (2012) Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 85(2):293–304

    Article  Google Scholar 

  • Winter S, Fischer HS, Fischer A (2010) Relative quanti­tative reference approach on naturalness assessments. For Ecol Manag 259:1624–1632

    Article  Google Scholar 

  • Zinnen J, Spyreas G, Erdős L, Berg C, Matthews JW (2021) Expert-based measures of human impact to vegetation. Appl Veg Sci 24:e12523

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.EdS. wrote the manuscript and prepared figures.

Corresponding author

Correspondence to Álvaro Enríquez-de-Salamanca.

Ethics declarations

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enríquez-de-Salamanca, Á. Causes of vegetation synanthropisation in Central Spain. Landsc Ecol 38, 3371–3388 (2023). https://doi.org/10.1007/s10980-023-01622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01622-0

Keywords

Navigation