Skip to main content

Advertisement

Log in

Spatiotemporal evolution of urbanization and its implications to urban planning of the megacity, Shanghai, China

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Urbanization has profoundly changed urban landscape patterns and morphologies. Understanding the spatiotemporal evolution of these changes and their driving forces is vital to decision making for urban planning and sustainable urban development.

Objectives

This study aims to quantify the spatiotemporal pattern of urban growth in Shanghai, China for testing urban growth hypotheses, to identify its driving factors, and to provide insights for sustainable urban planning.

Methods

We fitted a nonlinear curve to the urbanization pattern, employed landscape expansion indices to quantify the spatiotemporal evolution of urbanization, utilized partial least square regression to differentiate contribution of main socioeconomic driving factors.

Results

Urbanized land in Shanghai exhibited a logistic growth pattern from 1985 to 2015. The annual growth rate of urban area showed a wave-like pattern and peaked in 2000–2005. Urban growth modes of leapfrog, edge expansion, and infilling were identified, and these patterns alternates in dominance over time. The urbanization process in Shanghai followed the spiraling diffusion-coalescence hypothesis. The net increase of year-end residential population, urban infrastructure investment, and the total investment in fixed assets were the dominant driving factors to urban growth.

Conclusion

A logistic curve well quantified the temporal pattern of urbanization in Shanghai. Urbanization has slowed down, approaching the plateau of the curve, implying that urban growth driven by population increase and investment should switch to sustainable urban renewal and ecological constructions. Investment to urban green and blue infrastructures could help achieve “negative growth” targeted by the Shanghai Master Plan (2017–2035) for the overall developed land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aguayo MI, Wiegand T, Azócar GD, Wiegand K (2007) Revealing the driving forces of mid-cities urban growth patterns using spatial modeling: a case study of Los ángeles, Chile. Ecol Soc 12:181–194

    Article  Google Scholar 

  • Alig RJ, Kline JD, Lichtenstein M (2004) Urbanization on the US landscape: looking ahead in the 21st century. Landsc Urban Plan 69:219–234

    Article  Google Scholar 

  • Alqurashi A, Kumar L, Alghamdi K (2016) Spatiotemporal modeling of urban growth predictions based on driving force factors in five Saudi Arabian cities. ISPRS Int J Geo Inf 5:139

    Article  Google Scholar 

  • Angel S, Parent J, Civco DL, Blei A, Potere D (2011) The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Prog Plan 75:53–107

    Article  Google Scholar 

  • Bagan H, Yamagata Y (2012) Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40years. Remote Sens Environ 127:210–222

    Article  Google Scholar 

  • Bai X, Chen J, Shi P (2012) Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ Sci Technol 46:132–139

    Article  CAS  PubMed  Google Scholar 

  • Barrington-Leigh C, Millard-Ball A (2015) A century of sprawl in the United States. Proc Natl Acad Sci 112:8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibri SE, Krogstie J, Kärrholm M (2020) Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Dev Built Environ 4:100021

    Article  Google Scholar 

  • Blumenfeld H (1954) The tidal wave of metropolitan expansion. J Am Inst Plann 20:3–14

    Article  Google Scholar 

  • Bohnet IC, Pert PL (2010) Patterns, drivers and impacts of urban growth—a study from Cairns, Queensland, Australia from 1952 to 2031. Landsc Urban Plan 97:239–248

    Article  Google Scholar 

  • Chen M, Ye C, Zhou Y (2014) Comments on Mulligan’s “Revisiting the urbanization curve.” Cities 41:S54–S56

    Article  Google Scholar 

  • Chen Y, Chen Z, Xu G, Tian Z (2016) Built-up land efficiency in urban China: insights from the general land use plan (2006–2020). Habitat Int 51:31–38

    Article  Google Scholar 

  • Chen G, Li X, Liu X, Chen Y, Liang X, Leng J, Xu X, Liao W, Qiu YA, Wu Q, Huang K (2020) Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun 11:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Wei B, Chen G, Li J, Song C (2014) Influence of park size and its surrounding urban landscape patterns on the park cooling effect. J Urb Plan Dev 141:A4014002

    Article  Google Scholar 

  • Cui XZ, Wang YW, Chang Y (2012) The anthropogenic factors on urban growth: an empirical quantification in China. Adv Mat Res 518–523:6042–6049

    Google Scholar 

  • Deng X, Huang J, Rozelle S, Zhang J, Li Z (2015) Impact of urbanization on cultivated land changes in China. Land Use Policy 45:1–7

    Article  Google Scholar 

  • Deng Y, Fu B, Sun C (2018) Effects of urban planning in guiding urban growth: evidence from Shenzhen, China. Cities 83:118–128

    Article  Google Scholar 

  • Dhanaraj K, Angadi DP (2021) Urban expansion quantification from remote sensing data for sustainable land-use planning in Mangaluru, India. Remote Sens Appl Soc Environ 23:100602

    Google Scholar 

  • Dietzel C, Herold M, Hemphill JJ, Clarke KC (2005a) Spatio-temporal dynamics in California’s central valley: empirical links to urban theory. Int J Geogr Inf Sci 19:175–195

    Article  Google Scholar 

  • Dietzel C, Oguz H, Hemphill JJ, Clarke KC, Gazulis N (2005b) Diffusion and coalescence of the houston metropolitan area: evidence supporting a new urban theory. Environ Plann B Plann Des 32:231–246

    Article  Google Scholar 

  • Dong Y, Ren Z, Fu Y, Miao Z, Yang R, Sun Y, He X (2020) Recording urban land dynamic and its effects during 2000–2019 at 15 m resolution by cloud computing with landsat series. Remote Sens 12:2451

    Article  Google Scholar 

  • Dong Y, Ren Z, Fu Y, Hu N, Guo Y, Jia G, He X (2022) Decrease in the residents’ accessibility of summer cooling services due to green space loss in Chinese cities. Environ Int 158:107002

    Article  PubMed  Google Scholar 

  • Elmqvist T, Andersson E, McPhearson T, Bai X, Bettencourt L, Brondizio E, Colding J, Daily G, Folke C, Grimm N, Haase D, Ospina D, Parnell S, Polasky S, Seto KC, Van Der Leeuw S (2021) Urbanization in and for the Anthropocene. Urb Sustain 1:6

    Article  Google Scholar 

  • Ewing R (1997) Is Los Angeles-style sprawl desirable? J Am Plann Assoc 63:107–126

    Article  Google Scholar 

  • Fang C, Zhao S (2018) A comparative study of spatiotemporal patterns of urban expansion in six major cities of the Yangtze River Delta from 1980 to 2015. Ecosyst Health Sustain 4:95–114

    Article  Google Scholar 

  • Fang C, Li G, Wang S (2016) Changing and differentiated urban landscape in China: spatio-temporal patterns and driving forces. Environ Sci Technol 50:2217

    Article  CAS  PubMed  Google Scholar 

  • Fei W, Zhao S (2019) Urban land expansion in China’s six megacities from 1978 to 2015. Sci Total Environ 664:60–71

    Article  CAS  PubMed  Google Scholar 

  • Fertner C, Jørgensen G, Nielsen TAS, Nilsson KSB (2016) Urban sprawl and growth management—drivers, impacts and responses in selected European and US cities. Future Cities Environ 2:9

    Article  Google Scholar 

  • Gao J, O’Neill BC (2020) Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nat Commun 11:2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegazy IR, Kaloop MR (2015) Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int J Sustain Built Environ 4:117–124

    Article  Google Scholar 

  • Hsieh SC (2014) Analyzing urbanization data using rural–urban interaction model and logistic growth model. Comput Environ Urban Syst 45:89–100

    Article  Google Scholar 

  • Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31:667–688

    Article  Google Scholar 

  • Huang Z, Wei YD, He C, Li H (2015) Urban land expansion under economic transition in China: a multi-level modeling analysis. Habitat Int 47:69–82

    Article  Google Scholar 

  • Huang Z, He C, Wei YHD (2016) A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int 56:63–73

    Article  Google Scholar 

  • Huang K, Li X, Liu X, Seto KC (2019) Projecting global urban land expansion and heat island intensification through 2050. Environ Res Lett 14:114037

    Article  Google Scholar 

  • Jenerette G, Potere D (2010) Global analysis and simulation of land-use change associated with urbanization. Landsc Ecol 25:657–670

    Article  Google Scholar 

  • Jiang H, Sun Z, Guo H, Weng Q, Du W, Xing Q, Cai G (2021) An assessment of urbanization sustainability in China between 1990 and 2015 using land use efficiency indicators. Urb Sustain 1:34

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528

    Article  CAS  PubMed  Google Scholar 

  • Kantakumar LN, Kumar S, Schneider K (2016) Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat Int 51:11–22

    Article  Google Scholar 

  • Kantakumar LN, Kumar S, Schneider K (2020) What drives urban growth in Pune? A logistic regression and relative importance analysis perspective. Sustain Cities Soc 60:102269

    Article  Google Scholar 

  • Korcelli P (1970) A wave-like model of metropolitan spatial growth. Pap Reg Sci Assoc 24:127–138

    Article  Google Scholar 

  • Lee KR, Dipaolo B, Ji X (2000) Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model. Drug Dev Ind Pharm 26:661–669

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Flacke J, Schwarz N (2021) Does urban planning affect urban growth pattern? A case study of Shenzhen, China. Land Use Policy 101:105100

    Article  Google Scholar 

  • Li C, Li J, Wu J (2013a) Quantifying the speed, growth modes, and landscape pattern changes of urbanization: a hierarchical patch dynamics approach. Landsc Ecol 28:1875–1888

    Article  Google Scholar 

  • Li J, Li C, Zhu F, Song C, Wu J (2013b) Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc Ecol 28:1545–1565

    Article  Google Scholar 

  • Li X, Zhou W, Ouyang Z (2013c) Forty years of urban expansion in Beijing: what is the relative importance of physical, socioeconomic, and neighborhood factors? Appl Geogr 38:1–10

    Article  Google Scholar 

  • Li X, Zhang Y, Bao Y, Luo J, Jin X, Xu X, Song X, Yang G (2014) Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sens 6:6221–6241

    Article  Google Scholar 

  • Li Z, Xu X, Xu C, Liu M, Wang K, Yu B (2017) Annual runoff is highly linked to precipitation extremes in karst catchments of southwest China. J Hydrometeorol 18:2745–2759

    Article  Google Scholar 

  • Li C, Li J, Wu J (2018a) What drives urban growth in China? A multi-scale comparative analysis. Appl Geogr 98:43–51

    Article  Google Scholar 

  • Li G, Sun S, Fang C (2018b) The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc Urban Plan 174:63–77

    Article  Google Scholar 

  • Li X, Zhou Y, Hejazi M, Wise M, Vernon C, Iyer G, Chen W (2021) Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Commun Earth Environ 2:201

    Article  Google Scholar 

  • Liu X, Li X, Chen Y, Tan Z, Li S, Ai B (2010) A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol 25:671–682

    Article  Google Scholar 

  • Liu Z, He C, Wu J (2016) General spatiotemporal patterns of urbanization: an examination of 16 world cities. Sustainability 8:41

    Article  Google Scholar 

  • Liu X, Huang Y, Xu X, Li X, Li X, Ciais P, Lin P, Gong K, Ziegler AD, Chen A, Gong P, Chen J, Hu G, Chen Y, Wang S, Wu Q, Huang K, Estes L, Zeng Z (2020) High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustain 3:564–570

    Article  Google Scholar 

  • Lo CP, Yang XJ (2002) Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia metropolitan area. Photogramm Eng Remote Sens 68:1073–1082

    Google Scholar 

  • Long H, Tang G, Li X, Heilig GK (2007) Socio-economic driving forces of land-use change in Kunshan, the Yangtze River delta economic area of China. J Environ Manage 83:351–364

    Article  PubMed  Google Scholar 

  • Long Y, Gu Y, Han H (2012) Spatiotemporal heterogeneity of urban planning implementation effectiveness: evidence from five urban master plans of Beijing. Landsc Urban Plan 108:103–111

    Article  Google Scholar 

  • Lu C, Wu Y, Shen Q, Wang H (2013) Driving force of urban growth and regional planning: a case study of China’s Guangdong Province. Habitat Int 40:35–41

    Article  Google Scholar 

  • Lv ZQ, Dai FQ, Sun C (2012) Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region. Environ Monit Assess 184:6437–6448

    Article  PubMed  Google Scholar 

  • Mcdonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Cons 141:1695–1703

    Article  Google Scholar 

  • Melchiorri M, Florczyk AJ, Freire S, Schiavina M, Pesaresi M, Kemper T (2018) Unveiling 25 years of planetary urbanization with remote sensing: perspectives from the global human settlement layer. Remote Sens 10:768

    Article  Google Scholar 

  • Mitsuda Y, Ito S (2011) A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc Ecol Eng 7:117–125

    Article  Google Scholar 

  • Moreira F, Fontes I, Dias S, Silva JBE, Loupa-Ramos I (2016) Contrasting static versus dynamic-based typologies of land cover patterns in the Lisbon metropolitan area: towards a better understanding of peri-urban areas. Appl Geogr 75:49–59

    Article  Google Scholar 

  • Mulligan GF (2013) Reprint of: revisiting the urbanization curve. Cities 32:S58–S67

    Article  Google Scholar 

  • Nguyen LH, Nghiem SV, Henebry GM (2018) Expansion of major urban areas in the US great plains from 2000 to 2009 using satellite scatterometer data. Remote Sens Environ 204:524–533

    Article  Google Scholar 

  • Nickayin SS, Perrone F, Ermini B, Quaranta G, Salvia R, Gambella F, Egidi G (2021) Soil quality and peri-urban expansion of cities: a mediterranean experience (Athens, Greece). Sustainability 13:1–10

    Article  Google Scholar 

  • Northam RM (1979) Urban geography. Wiley, New york

    Google Scholar 

  • Peng W, Wang G, Zhou J, Zhao J, Yang C (2015) Studies on the temporal and spatial variations of urban expansion in Chengdu, western China, from 1978 to 2010. Sustain Cities Soc 17:141–150

    Article  Google Scholar 

  • Pham HM, Yamaguchi Y (2011) Urban growth and change analysis using remote sensing and spatial metrics from 1975 to 2003 for Hanoi, Vietnam. Int J Remote Sens 32:1901–1915

    Article  Google Scholar 

  • Qiu T, Song C, Zhang Y, Liu H, Vose JM (2020) Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens Environ 236:111477

    Article  Google Scholar 

  • Rahnama MR, Wyatt R, Shaddel L (2020) A spatial-temporal analysis of urban growth in melbourne; Were local government areas moving toward compact or sprawl from 2001–2016? Appl Geogr 124:102318

    Article  Google Scholar 

  • Richter SM (2020) Revisiting urban expansion in the continental United States. Landsc Urban Plan 204:103911

    Article  Google Scholar 

  • Schneider A, Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud 45:659–692

    Article  Google Scholar 

  • Seto KC, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landsc Ecol 20:871–888

    Article  Google Scholar 

  • Seto KC, Kaufmann RK (2003) Modeling the drivers of urban land use change in the Pearl River Delta, China: Integrating remote sensing with socioeconomic data. Land Econ 79:106–121

    Article  Google Scholar 

  • Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opinion Environ Sustain 1:89–95

    Article  Google Scholar 

  • Seto KC, Fragkias M, Guneralp B, Reilly MK (2011) A Meta-Analysis of global urban land expansion. PLoS ONE 6:e23777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto KC, Guneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci USA 109:16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi A, Chiba Y, Okamoto K, Yokoyama S, Murayama A (2014) Can master planning control and regulate urban growth in Vientiane, Laos? Landsc Urban Plan 131:1–13

    Article  Google Scholar 

  • Shi ZH, Ai L, Li X, Huang XD, Wu GL, Liao W (2013) Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J Hydrol 498:165–176

    Article  Google Scholar 

  • SMBPNR (Shanghai Municipal Bureau of Planning and Natural Resources) (2018) Shanghai master plan 2017–2035. In. Shanghai

  • SMBPNR (Shanghai Municipal Bureau of Planning and Natural Resources) (2021) Bulletin on main data of the 3rd National Land Resource Survey. In. Shanghai

  • SMBS (Shanghai Municipal Bureau of Statistics) (2016) Shanghai statistical yearbook 2016. China Statistics Press

    Google Scholar 

  • SMBS (Shanghai Municipal Bureau of Statistics) (2021) Shanghai statistical yearbook 2021. China Statistics Press

    Google Scholar 

  • Su S, Ma X, Xiao R (2014) Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecol Ind 40:10–18

    Article  Google Scholar 

  • Sun Y, Zhao S (2018) Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji Urban Agglomeration from 1978 to 2015. Ecol Ind 87:302–313

    Article  Google Scholar 

  • Sun C, Wu ZF, Lv ZQ, Yao N, Wei JB (2013) Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int J Appl Earth Obs Geoinf 21:409–417

    Google Scholar 

  • Sun Y, Zhao S, Qu W (2015) Quantifying spatiotemporal patterns of urban expansion in three capital cities in Northeast China over the past three decades using satellite data sets. Environ Earth Sci 73:7221–7235

    Article  Google Scholar 

  • Tian G, Liu J, Xie Y, Yang Z, Zhuang D, Zheng N (2005) Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS. Cities 22:400–410

    Article  Google Scholar 

  • Tian G, Jiang J, Yang Z, Zhang Y (2011) The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol Model 222:865–878

    Article  Google Scholar 

  • Tian L, Chen J, Yu SX (2014) Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc Ecol 29:715–727

    Article  Google Scholar 

  • Tian L, Ge B, Li Y (2017a) Impacts of state-led and bottom-up urbanization on land use change in the peri-urban areas of Shanghai: planned growth or uncontrolled sprawl? Cities 60:476–486

    Article  Google Scholar 

  • Tian L, Li Y, Yan Y, Wang B (2017b) Measuring urban sprawl and exploring the role planning plays: a shanghai case study. Land Use Policy 67:426–435

    Article  Google Scholar 

  • Tian Y, Tsendbazar N-E, van Leeuwen E, Fensholt R, Herold M (2022) A global analysis of multifaceted urbanization patterns using earth observation data from 1975 to 2015. Landsc Urban Plan 219:104316

    Article  Google Scholar 

  • Tu Y, Chen B, Yu L, Xin Q, Gong P, Xu B (2021) How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landsc Ecol 36:243–263

    Article  Google Scholar 

  • Tzanakakis VA, Mauromoustakos A, Angelakis AN (2014) Prediction of biomass production and nutrient uptake in land application using partial least squares regression analysis. Water 7:1–11

    Article  Google Scholar 

  • UN (2018). World urbanization prospects: The 2018 Revision. In: Office of the Director, Population Division, United Nations

  • van Vliet J (2019) Direct and indirect loss of natural area from urban expansion. Nat Sustain 2:755–763

    Article  Google Scholar 

  • Vargas-Hernández JG, Zdunek-Wielgołaska J (2021) Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environ Dev Sustain 23:1335–1354

    Article  Google Scholar 

  • Verburg PH, van Eck JRR, de Nijs TCM, Dijst MJ, Schot P (2004) Determinants of land-use change patterns in the Netherlands. Environ Plan B-Plan Design 31:125–150

    Article  Google Scholar 

  • Wang H (1999) Partial least squares regression—linear and nonlinear methods. National Defend Industy Press, Beijing

    Google Scholar 

  • Wang S, Liu X, Zhou C, Hu J, Ou J (2017) Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl Energy 185:189–200

    Article  CAS  Google Scholar 

  • Wang J, Lin Y, Glendinning A, Xu Y (2018) Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 75:375–387

    Article  Google Scholar 

  • Wang M, Li J, Kuang S, He Y, Chen G, Huang Y, Song C, Anderson P, Łowicki D (2020a) Plant diversity along the urban-rural gradient and its relationship with urbanization degree in Shanghai, China. Forests 11:171

    Article  Google Scholar 

  • Wang X, Shi R, Zhou Y (2020b) Dynamics of urban sprawl and sustainable development in China. Socioecon Plann Sci 70:100736

    Article  Google Scholar 

  • Weng Q (2001) A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int J Remote Sens 22:1999–2014

    Google Scholar 

  • Wilson EH, Hurd JD, Civco DL, Prisloe MP, Arnold C (2003) Development of a geospatial model to quantify, describe and map urban growth. Remote Sens Environ 86:275–285

    Article  Google Scholar 

  • Wu JG, Jenerette GD, Buyantuyev A, Redman CL (2011) Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecol Complex 8:1–8

    Article  Google Scholar 

  • Wu W, Zhao S, Zhu C, Jiang J (2015) A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc Urban Plan 134:93–106

    Article  Google Scholar 

  • Wu C, Li J, Wang C, Song C, Chen Y, Finka M, La Rosa D (2019) Understanding the relationship between urban blue infrastructure and land surface temperature. Sci Total Environ 694:133742

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Li J, Wang C, Song C, Haase D, Breuste J, Finka M (2021) Estimating the cooling effect of pocket green space in high density urban areas in Shanghai, China. Front Environ Sci 9:1–8

    Article  CAS  Google Scholar 

  • Xiao J, Shen Y, Ge J, Tateishi R, Tang C, Liang Y, Huang Z (2006) Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc Urban Plan 75:69–80

    Article  Google Scholar 

  • Xu C, Liu M, Zhang C, An S, Yu W, Chen JM (2007) The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecol 22:925–937

    Article  Google Scholar 

  • Xu Z, Peng J, Qiu S, Liu Y, Dong J, Zhang H (2022) Responses of spatial relationships between ecosystem services and the sustainable development goals to urbanization. Sci Total Environ 850:157868

    Article  CAS  PubMed  Google Scholar 

  • You H (2016) Quantifying megacity growth in response to economic transition: a case of Shanghai, China. Habitat Int 53:115–122

    Article  Google Scholar 

  • Yu XJ, Ng CN (2007) Spatial and temporal dynamics of urban sprawl along two urban–rural transects: a case study of Guangzhou, China. Landsc Urban Plan 79:96–109

    Article  Google Scholar 

  • Yu W, Zhou W (2017) The spatiotemporal pattern of urban expansion in China: a comparison study of three urban megaregions. Remote Sens 9:45

    Article  Google Scholar 

  • Yu Z, Guo X, Jørgensen G, Vejre H (2017) How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol Ind 82:152–162

    Article  Google Scholar 

  • Yue W, Liu Y, Fan P (2013) Measuring urban sprawl and its drivers in large Chinese cities: the case of Hangzhou. Land Use Policy 31:358–370

    Article  Google Scholar 

  • Yue W, Fan P, Wei YD, Qi J (2014) Economic development, urban expansion, and sustainable development in Shanghai. Stoch Env Res Risk Assess 28:783–799

    Article  Google Scholar 

  • Zhang Q, Su S (2016) Determinants of urban expansion and their relative importance: a comparative analysis of 30 major metropolitans in China. Habitat Int 58:89–107

    Article  Google Scholar 

  • Zhang C, Miao C, Zhang W, Chen X (2018) Spatiotemporal patterns of urban sprawl and its relationship with economic development in China during 1990–2010. Habitat Int 79:51–60

    Article  Google Scholar 

  • Zhang Z, Wang B, Buyantuev A, He X, Gao W, Wang Y, Yang Z (2019) Urban agglomeration of Kunming and Yuxi cities in Yunnan, China: the relative importance of government policy drivers and environmental constraints. Landsc Ecol 34:663–679

    Article  Google Scholar 

  • Zhang F, Xu N, Wang C, Wu F, Chu X (2020) Effects of land use and land cover change on carbon sequestration and adaptive management in Shanghai, China. Phys Chem Earth Parts a/b/c 120:102948

    Article  Google Scholar 

  • Zhao S, Zhou D, Zhu C, Qu W, Zhao J, Sun Y (2015) Rates and patterns of urban expansion in China’s 32 major cities over the past three decades. Landsc Ecol 30:1541–1559

    Article  Google Scholar 

  • Zhao M, Cheng C, Zhou Y, Li X, Shen S, Song C (2022) A global dataset of annual urban extents (1992–2020) from harmonized nighttime lights. Earth Syst Sci Data 14:517–534

    Article  Google Scholar 

  • Zhou L, Dang X, Sun Q, Wang S (2020a) Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain Cities Soc 55:102045

    Article  Google Scholar 

  • Zhou Y, Li X, Liu Y (2020b) Land use change and driving factors in rural China during the period 1995–2015. Land Use Policy 99:105048

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Xiaoping Liu in the School of Geography and Planning, Sun Yat-Sen University for providing the new updated GAUD dataset for reference. We also thank the two anonymous reviewers for their comments and constructive suggestions.

Funding

This work was partly supported by the National Key R&D Program of China (Grant No. 2017YFC0505701 to J. Li), the Natural Science Foundation of China (Grant No. 31870453 to J. Li, Grant No. 32001162 to C. Wu, Grant No. 31971485 to C. Wang, and Grant No. 31528004 to C. Song), Guangdong Foundation for Program of Science and Technology Research (Grant No. 2020B1212060048, and Grant No. 2019B121201004 to C. Li), China Postdoctoral Science Foundation 2021M702131 to C. Wu, and the Joint-PhD project of Shanghai Jiao Tong University and The University of Melbourne to J. Li and A. Hahs.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JL, Data preparation: CWU, LO, HX, JW, MZ and XB, Methodology: CWU and CL, Writing: CWU, Editing: JL, CS, TQ, CWA, DH, AH and MF.

Corresponding authors

Correspondence to Junxiang Li or Chunfang Wang.

Ethics declarations

Competing interest

The authors have no relevant fnancial or non-fnancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Li, C., Ouyang, L. et al. Spatiotemporal evolution of urbanization and its implications to urban planning of the megacity, Shanghai, China. Landsc Ecol 38, 1105–1124 (2023). https://doi.org/10.1007/s10980-022-01578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01578-7

Keywords

Navigation