Skip to main content

Advertisement

Log in

Evaluating climate-driven fallowing for ecological connectivity of species at risk

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change and agricultural land use change are modifying the configuration of natural lands within agricultural landscapes, impacting species’ ability to move freely between remaining (semi-)natural areas. Working lands are inherently costly to set aside for biodiversity, making the establishment of additional permanent reserves that facilitate connectivity challenging. Yet, even temporary increases in connectivity may enable increased gene flow with long-term benefits for species health and persistence.

Objectives

Here we explore the potential for dynamic conservation reserves, in the form of either temporarily or semi-permanently fallowed croplands, to increase connectivity in intensive agricultural regions.

Methods

We evaluate the potential for fallowed lands to facilitate functional habitat connectivity for an at-risk species in the San Joaquin Valley, an intensive agricultural landscape in California, USA. We perform landscape connectivity analyses to examine how drought-induced fallowing between 2011 and 2017 may have impacted connectivity within Kern County for the endangered San Joaquin kit fox (Vulpes macrotis mutica).

Results

We found that an increase in fallowed lands from 2011 to 2015/2017 in Kern County likely corresponded to increased functional connectivity for the kit fox, including significant decreases in cumulative cost to distance traveled (~ 0.8 to 18% and 0.3 to 12.2% in 2015/2017 respective to 2011 across different model scenarios). These significant reductions indicate that cumulative energy costs incurred by kit foxes traveling between core habitats likely decreased with an increase in fallowing, with the estimated benefits from semi-permanently fallowed lands on average 2.4 times greater than for more temporarily fallowed lands.

Conclusions

Our results highlight that opportunistic and dynamic conservation actions have the potential to reduce conflict between biodiversity preservation and agricultural production in working landscapes by increasing landscape connectivity via temporarily or semi-permanently fallowed parcels. Agri-environmental programs incentivizing the creation of dynamic, fallowing-based reserves could help landowners manage reduced groundwater availability while improving species’ mobility in the face of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

FAM data was supplied by Forrest Melton upon request. All other data is publicly downloadable from the sources cited, and processed in the manner described in the Methods and SI Methods.

Code availability

Code is available upon request.

References

  • Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. J Appl Ecol 51(3):703–713

    Article  Google Scholar 

  • Ando AW, Hannah L (2011) Lessons from finance for new land-conservation strategies given climate-change uncertainty. Conserv Biol 25(2):412–414

    Article  PubMed  Google Scholar 

  • Aycrigg JL, Davidson A, Svancara LK, Gergely KJ, McKerrow A, Scott JM (2013) Representation of ecological systems within the protected areas network of the continental United States. PLoS ONE 8(1):e54689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88(2):310–326

    Article  PubMed  Google Scholar 

  • Balmford B, Green RE, Onial M, Phalan B, Balmford A (2019) How imperfect can land sparing be before land sharing is more favourable for wild species? J Appl Ecol 56(1):73–84

    Article  Google Scholar 

  • Bengtsson J, Angelstam P, Elmqvist T, Emanuelsson U, Folke C, Ihse M, Moberg F, Nyström M (2003) Reserves, resilience and dynamic landscapes. Ambio 32(6):389–396

    Article  PubMed  Google Scholar 

  • Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133(2):250–264

    Article  Google Scholar 

  • Bjurlin CD, Cypher BL, Wingert CM, Job CLVH (2005) Urban roads and the endangered San Joaquin kit fox. California Department of Transportation, California

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238

    Article  PubMed  Google Scholar 

  • Boryan C, Yang Z, Mueller R, Craig M (2011) Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int 26(5):341–358

    Article  Google Scholar 

  • Bourque K, Schiller A, Loyola Angosto C, McPhail L, Bagnasco W, Ayres A, Larsen A (2019) Balancing agricultural production, groundwater management, and biodiversity goals: a multi-benefit optimization model of agriculture in Kern County, California. Sci Total Environ 670:865–875

    Article  CAS  PubMed  Google Scholar 

  • Bryant BP, Kelsey TR, Vogl AL, Wolny SA, MacEwan D, Selmants PC, Biswas T, Butterfield HS (2020) Shaping land use change and ecosystem restoration in a water-stressed agricultural landscape to achieve multiple benefits. Front Sustain Food Syst 4:138

    Article  Google Scholar 

  • Buto SG, Anderson RD (2020) NHDPlus high resolution (NHDPlus HR)—a hydrography framework for the Nation (Report No. 2020–3033; Fact Sheet, p. 2). USGS Publications Warehouse. https://doi.org/10.3133/fs20203033

  • California Department of Fish and Wildlife California Interagency Wildlife Task Group (2016) Kit Fox Predicted Habitat—CWHR M148 [ds2599]. https://map.dfg.ca.gov/metadata/ds2599.html

  • California Department of Food and Agriculture (2019) California Agricultural Statistics Review 2018–2019. https://www.cdfa.ca.gov/statistics/PDFs/2018-2019AgReportnass.pdf

  • California Department of Water Resources (2017) 2014 California Statewide Agricultural Land Use. https://gis.water.ca.gov/app/CADWRLandUseViewer/

  • California Department of Water Resources (2019) 2016 California Statewide Agricultural Land Use. https://gis.water.ca.gov/app/CADWRLandUseViewer/

  • California Department of Water Resources (2021) Sustainable Groundwater Management Grant Program. https://water.ca.gov/Work-With-Us/Grants-And-Loans/Sustainable-Groundwater

  • California water code [CWC]. Division 6, part 2.74. Sustainable Groundwater Management (2014).

  • Cypher BL, Van Horn Job CL (2012) Management and conservation of San Joaquin kit foxes in urban environments. Proc Vertebr Pest Conf. https://doi.org/10.5070/V425110422

    Article  Google Scholar 

  • Cypher BL, Warrick GD, Otten MR, O’Farrell TP, Berry WH, Harris CE, Kato TT, McCue PM, Scrivner JH, Zoellick BW (2000) Population dynamics of San Joaquin kit foxes at the naval petroleum reserves in California. Wildl Monogr 207:1–43

    Google Scholar 

  • Cypher BL, Kelly PA, Williams DF, Clark HO, Brown AD, Phillips SE (2005) Foxes in farmland: recovery of the endangered San Joaquin kit fox on private lands in California [FINAL REPORT SUBMITTED TO THE NATIONAL FISH AND WILDLIFE FOUNDATION]. https://esrp.csustan.edu/publications/pdf/nfwf_esrp_kitfox.pdf

  • Cypher BL, Phillips SE, Kelly PA (2007) Habitat suitability and potential corridors for San Joaquin Kit Fox in the San Luis Unit. 38

  • Cypher BL, Phillips SE, Kelly PA (2013) Quantity and distribution of suitable habitat for endangered San Joaquin kit foxes: conservation implications. Can Biol Conserv 16:25–31

    Google Scholar 

  • Cypher BL, Westall TL, Spencer KA, Meade DE, Kelly EC, Dart J, Van Horn Job CL (2019) Response of San Joaquin kit foxes to Topaz Solar Farms: implications for conservation of kit foxes. BHE Renewables and Topaz Solar Farms. Final Report

  • D’Aloia CC, Naujokaitis-Lewis I, Blackford C, Chu C, Curtis JM, Darling E, Guichard F, Leroux SJ, Martensen AC, Rayfield B (2019) Coupled networks of permanent protected areas and dynamic conservation areas for biodiversity conservation under climate change. Front Ecol Evol 7:27

    Article  Google Scholar 

  • Department of Water Resources (2021) Canals and aqueducts local. https://atlas-dwr.opendata.arcgis.com/datasets/b788fb2628844f54b92e46dac5bb7229_

  • Dickson BG, Albano CM, McRae BH, Anderson JJ, Theobald DM, Zachmann LJ, Sisk TD, Dombeck MP (2017) Informing strategic efforts to expand and connect protected areas using a model of ecological flow, with application to the western United States. Conserv Lett 10(5):564–571

    Article  Google Scholar 

  • Diniz MF, Cushman SA, Machado RB, Júnior PDM (2020) Landscape connectivity modeling from the perspective of animal dispersal. Landsc Ecol 35(1):41–58

    Article  Google Scholar 

  • Doherty TS, Driscoll DA (2018) Coupling movement and landscape ecology for animal conservation in production landscapes. Proc R Soc B 285(1870):20172272

    Article  PubMed Central  PubMed  Google Scholar 

  • Dudley N, Alexander S (2017) Agriculture and biodiversity: a review. Biodiversity 18(2–3):45–49

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21(6):1003–1015

    Article  Google Scholar 

  • Feniuk C, Balmford A, Green RE (2019) Land sparing to make space for species dependent on natural habitats and high nature value farmland. Proc R Soc B 286(1909):20191483

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer J, Abson DJ, Bergsten A, Collier NF, Dorresteijn I, Hanspach J, Hylander K, Schultner J, Senbeta F (2017) Reframing the food–biodiversity challenge. Trends Ecol Evol 32(5):335–345

    Article  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  PubMed  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  PubMed  Google Scholar 

  • Folke C (2006) The economic perspective: conservation against development versus conservation for development. Conserv Biol 20(3):686–688

    Article  PubMed  Google Scholar 

  • Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landsc Ecol 24(7):863–877

    Article  Google Scholar 

  • Frei B, Queiroz C, Chaplin-Kramer B, Andersson E, Renard D, Rhemtulla JM, Bennett EM (2020) A brighter future: complementary goals of diversity and multifunctionality to build resilient agricultural landscapes. Glob Food Sec 26:100407

    Article  Google Scholar 

  • Gebremichael M, Krishnamurthy PK, Ghebremichael LT, Alam S (2021) What drives crop land use change during multi-year droughts in California’s central valley? Prices or concern for water? Remote Sens 13(4):650

    Article  Google Scholar 

  • Gesch DB, Evans GA, Oimoen MJ, Arundel S (2018) The National Elevation Dataset. American Society for Photogrammetry and Remote Sensing; USGS Publications Warehouse. http://pubs.er.usgs.gov/publication/70201572 pp 83–110

  • Golet GH, Low C, Avery S, Andrews K, McColl CJ, Laney R, Reynolds MD (2018) Using ricelands to provide temporary shorebird habitat during migration. Ecol Appl 28(2):409–426

    Article  PubMed  Google Scholar 

  • Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41(24):9017–9023

    Article  Google Scholar 

  • Griffith GE, Omernik JM, Smith DW, Cook TD, Tallyn E, Moseley K, Johnson CB (2016) Ecoregions of California (Report No. 2016–1021; Open-File Report). USGS Publications Warehouse. https://doi.org/10.3133/ofr20161021

  • Haight RG, Cypher B, Kelly PA, Phillips S, Ralls K, Possingham HP (2004) Optimizing reserve expansion for disjunct populations of San Joaquin kit fox. Biol Conserv 117(1):61–72

    Article  Google Scholar 

  • Hanak E, Escriva-Bou A, Gray B, Green S, Harter T, Jezdimirovic J, Lund J, Medellín-Azuara J, Moyle P, Seavy N (2019) Water and the future of the San Joaquin Valley. Public Policy Institute of California, San Francisco

    Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5(3):131–138

    Article  Google Scholar 

  • Harrison S (2013) Plant and animal endemism in California. Univ California Press. https://doi.org/10.1525/9780520954731

    Article  Google Scholar 

  • Jin S, Homer C, Yang L, Danielson P, Dewitz J, Li C, Zhu Z, Xian G, Howard D (2019) Overall methodology design for the United States national land cover database 2016 products. Remote Sens 11(24):2971

    Article  Google Scholar 

  • Kattwinkel M, Biedermann R, Kleyer M (2011) Temporary conservation for urban biodiversity. Biol Conserv 144(9):2335–2343

    Article  Google Scholar 

  • Keeley AT, Beier P, Gagnon JW (2016) Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landsc Ecol 31(9):2151–2162

    Article  Google Scholar 

  • Keeley AT, Beier P, Keeley BW, Fagan ME (2017) Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc Urban Plan 161:90–102

    Article  Google Scholar 

  • Kelsey R, Hart A, Butterfield HS, Vink D (2018) Groundwater sustainability in the San Joaquin Valley: multiple benefits if agricultural lands are retired and restored strategically. Calif Agric 72(3):151–154

    Article  Google Scholar 

  • Koopman ME, Cypher BL, Scrivner JH (2000) Dispersal patterns of San Joaquin Kit Foxes (Vulpes Macrotis Mutica). J Mammal 81(1):213–222

    Article  Google Scholar 

  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E (2019) Soil and the intensification of agriculture for global food security. Environ Int 132:105078

    Article  PubMed  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17:4

    Article  Google Scholar 

  • Kuussaari M, Hyvönen T, Härmä O (2011) Pollinator insects benefit from rotational fallows. Agr Ecosyst Environ 143(1):28–36

    Article  Google Scholar 

  • Larrosa C, Carrasco LR, Milner-Gulland E (2016) Unintended feedbacks: challenges and opportunities for improving conservation effectiveness. Conserv Lett 9(5):316–326

    Article  Google Scholar 

  • Larsen AE, McComb S (2021) Land cover and climate changes drive regionally heterogeneous increases in US insecticide use. Landsc Ecol 36(1):159–177

    Article  Google Scholar 

  • Larsen AE, Meng K, Kendall BE (2019) Causal analysis in control—impact ecological studies with observational data. Methods Ecol Evol 10(7):924–934

    Article  Google Scholar 

  • Larsen AE, Farrant DN, MacDonald AJ (2020) Spatiotemporal overlap of pesticide use and species richness hotspots in California. Agric Ecosyst Environ 289:106741

    Article  CAS  Google Scholar 

  • Lawler J, Ruesch AS, Olden J, McRae B (2013) Projected climate-driven faunal movement routes. Ecol Lett 16(8):1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Lortie CJ, Filazzola A, Kelsey R, Hart AK, Butterfield HS (2018) Better late than never: a synthesis of strategic land retirement and restoration in California. Ecosphere 9(8):e02367

    Article  Google Scholar 

  • Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, Visconti P, Woodley S, Kingston N, Lewis E, Maron M, Strassburg BBN, Wenger A, Jonas HD, Venter O, Watson JEM (2020) Area-based conservation in the twenty-first century. Nature 586(7828):217–227

    Article  CAS  PubMed  Google Scholar 

  • McRae BH (2013) Circuitscape ArcGIS toolbox. https://circuitscape.org/downloads/

  • McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle

    Google Scholar 

  • McRae BH, Kavanagh DM (2017) User Guide: Linkage Pathways Tool of the Linkage Mapper Toolbox. Version 2.0

  • McRae BH, Shah VB (2009) Circuitscape user’s guide. The University of California, Santa Barbara

    Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724

    Article  PubMed  Google Scholar 

  • McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7(12):e52604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McRae BH, Shah V, Edelman A (2016) Circuitscape: Modeling landscape connectivity to promote conservation and human health. https://doi.org/10.13140/RG.2.1.4265.1126

  • Medellín-Azuara J, MacEwan D, Howitt RE, Koruakos G, Dogrul EC, Brush CF, Kadir TN, Harter T, Melton F, Lund JR (2015) Hydro-economic analysis of groundwater pumping for irrigated agriculture in California’s Central Valley, USA. Hydrogeol J 23(6):1205–1216

    Article  Google Scholar 

  • Medellín-Azuara J, MacEwan D, Howitt RE, Sumner DA, Lund JR, Scheer J, Gailey R, Hart Q, Alexander ND, Arnold B (2016) Economic analysis of the 2016 California drought on agriculture. Center for Watershed Sciences, Davis

    Google Scholar 

  • Melton F (2020) Personal Correspondence [Personal communication]

  • Melton F, Rosevelt C, Guzman A, Johnson L, Zaragoza I, Verdin J, Thenkabail P, Wallace C, Mueller R, Willis P (2015) Fallowed area mapping for drought impact reporting: 2015 assessment of conditions in the California Central Valley. Mountain View, NASA Ames Research Center

    Google Scholar 

  • Mockshell J, Kamanda J (2018) Beyond the agroecological and sustainable agricultural intensification debate: is blended sustainability the way forward? Int J Agric Sustain 16(2):127–149

    Article  Google Scholar 

  • Moilanen A, Laitila J, Vaahtoranta T, Dicks LV, Sutherland WJ (2014) Structured analysis of conservation strategies applied to temporary conservation. Biol Conserv 170:188–197

    Article  Google Scholar 

  • Moose PB (2021) San Joaquin kit fox male. Public Domain Images Website. http://www.public-domain-image.com/full-image/fauna-animals-public-domain-images-pictures/foxes-and-wolves-public-domain-images-pictures/san-joaquin-kit-fox-male.jpg.html

  • Nogeire-McRae T, Lawler JJ, Schumaker NH, Cypher BL, Phillips SE (2019) Land use change and rodenticide exposure trump climate change as the biggest stressors to San Joaquin kit fox. PLoS ONE 14(6):e0214297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conserv Lett 1(1):2–11

    Article  Google Scholar 

  • Office of Governor Gavin Newsom (2020) Governor Newsom Launches Innovative Strategies to Use California Land to Fight Climate Change, Conserve Biodiversity and Boost Climate Resilience.

  • Oliver YM, Robertson MJ, Weeks C (2010) A new look at an old practice: benefits from soil water accumulation in long fallows under Mediterranean conditions. Agric Water Manag 98(2):291–300

    Article  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Queiroz C, Beilin R, Folke C, Lindborg R (2014) Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 12(5):288–296

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.

  • Raymond CM, Frantzeskaki N, Kabisch N, Berry P, Breil M, Nita MR, Geneletti D, Calfapietra C (2017) A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ Sci Policy 77:15–24

    Article  Google Scholar 

  • Reynolds MD, Sullivan BL, Hallstein E, Matsumoto S, Kelling S, Merrifield M, Fink D, Johnston A, Hochachka WM, Bruns NE (2017) Dynamic conservation for migratory species. Sci Adv 3(8):e1700707

    Article  PubMed Central  PubMed  Google Scholar 

  • Ribaudo M, Greene C, Hansen L, Hellerstein D (2010) Ecosystem services from agriculture: steps for expanding markets. Ecol Econ 69(11):2085–2092

    Article  Google Scholar 

  • Roberts M, Milman A, Blomquist W (2021) The sustainable groundwater management act (SGMA): California’s prescription for common challenges of groundwater governance. In: Baird J, Plummer R (eds) Water resilience: management and governance in times of change. Springer International Publishing, Cham, pp 41–63

    Chapter  Google Scholar 

  • Rolf W, Pauleit S, Wiggering H (2019) A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban for Urban Green 40:73–83

    Article  Google Scholar 

  • Sanz-Pérez A, Giralt D, Robleño I, Bota G, Milleret C, Mañosa S, Sardà-Palomera F (2019) Fallow management increases habitat suitability for endangered steppe bird species through changes in vegetation structure. J Appl Ecol 56(9):2166–2175

    Article  Google Scholar 

  • Saura S, Bodin Ö, Fortin M (2014) EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182

    Article  Google Scholar 

  • Shackelford GE, Steward PR, German RN, Sait SM, Benton TG (2015) Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers Distrib 21(3):357–367

    Article  PubMed  Google Scholar 

  • Stewart JAE, Butterfield HS, Richmond JQ, Germano DJ, Westphal MF, Tennant EN, Sinervo B (2019) Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California’s San Joaquin Desert. PLoS ONE 14(1):e0210766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarjuelo R, Margalida A, Mougeot F (2020) Changing the fallow paradigm: a win–win strategy for the post-2020 Common Agricultural Policy to halt farmland bird declines. J Appl Ecol 57(3):642–649

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toivonen M, Herzon I, Helenius J (2013) Environmental fallows as a new policy tool to safeguard farmland biodiversity in Finland. Biol Conserv 159:355–366

    Article  Google Scholar 

  • Trainor AM, Walters JR, Morris WF, Sexton J, Moody A (2013) Empirical estimation of dispersal resistance surfaces: a case study with red-cockaded woodpeckers. Landsc Ecol 28(4):755–767

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8(8):857–874

    Article  Google Scholar 

  • Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N, Avgar T, Bartlam-Brooks H, Bayarbaatar B, Belant JL, Bertassoni A, Beyer D, Bidner L, van Beest FM, Blake S, Blaum N, Mueller T (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359(6374):466–469

    Article  CAS  PubMed  Google Scholar 

  • U.S. Fish and Wildlife (2020) Species Status Assessment Report for the San Joaquin kit fox (Vulpes macrotis mutica). https://ecos.fws.gov/ServCat/DownloadFile/185116

  • U.S. Fish and Wildlife Service (1998) Recovery plan for upland species of the San Joaquin Valley, California. U.S. Fish and Wildlife Service. https://esrp.csustan.edu/publications/recoveryplan.php

  • United States Geological Survey (USGS) (2018) National Elevation Dataset. The National Map. https://viewer.nationalmap.gov/advanced-viewer/

  • United States Geological Survey (USGS) (2020) National Hydrography Dataset: NHDPlus High Resolution (NHDPlus HR). https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products

  • U.S. Census Bureau (2019) TIGER/Line Shapefiles (machinereadable data files): California, Primary and Secondary Roads.

  • Venter O, Magrach A, Outram N, Klein CJ, Possingham HP, Di Marco M, Watson JEM (2018) Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions: protected areas missing biodiversity. Conserv Biol 32(1):127–134

    Article  PubMed  Google Scholar 

  • Villard M, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318

    Article  Google Scholar 

  • Ward M, Saura S, Williams B, Ramírez-Delgado JP, Arafeh-Dalmau N, Allan JR, Venter O, Dubois G, Watson JEM (2020) Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat Commun 11(1):4563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warrick GD, Cypher BL (1998) Factors affecting the spatial distribution of san joaquin kit foxes. J Wildl Manag 62(2):707

    Article  Google Scholar 

  • Warrick GD, Clark HO, Kelly PA, Williams DF, Cypher BL (2007) Use of agricultural lands by San Joaquin Kit Foxes. Western N Am Nat 67(2):270–277

    Article  Google Scholar 

  • White PJ, Garrott RA (1999) Population dynamics of kit foxes. Can J Zool 77(3):486–493

    Article  Google Scholar 

  • White PJ, Ralls K (1993) Reproduction and spacing patterns of kit foxes relative to changing prey availability. J Wildl Manag 53:861–867

    Article  Google Scholar 

  • White PJ, Ralls K, Vanderbilt-White CA (1995) Overlap in habitat and food use between coyotes and San Joaquin kit foxes. Southwestern Natl 40:342–349

    Google Scholar 

  • Wooldridge JM (2010) Econometric analysis of cross section and panel data, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24(7):868–879

    Article  Google Scholar 

  • Zeller KA, Lewsion R, Fletcher RJ, Tulbure MG, Jennings MK (2020) Understanding the importance of dynamic landscape connectivity. Land 9(9):303

    Article  Google Scholar 

Download references

Acknowledgements

We thank Forrest Melton at the NASA Ames Research Center Cooperative for Research in Earth Science and Technology and NASA Applied Sciences Program and Western Water Applications Office for sharing the NASA-USGS-USDA Fallowed Area Mapping (FAM) project data and providing comments on this manuscript. Additionally, we would like to thank our editor and all of our reviewers for their thorough and constructive comments, which helped us to improve the quality of this manuscript.

Funding

SM was supported in part by the Four-Year Fellowship program at the University of British Columbia, Vancouver. CP was supported in part by the Interdisciplinary Quantitative Biology (IQ Biology) Ph.D. program at the BioFrontiers Institute, University of Colorado Boulder. AEL acknowledges support from the US National Science Foundation (No. 2042526) and the US Department of Agriculture (No. 2022-67019-36397).

Author information

Authors and Affiliations

Authors

Contributions

SM and AL conceptualized and designed the study. Material preparation and data collection were performed by SM, and supported by Forrest Melton with regards to supplying Fallow Area Mapping data. SM, AL, and CP performed the formal analysis and investigation, and contributed to the first draft of the manuscript. All authors reviewed and edited previous versions of the manuscript, and read and approved the final manuscript.

Corresponding author

Correspondence to Sofie McComb.

Ethics declarations

Conflict of interest

We declare no conflicts of interest.

Ethical approval

No ethics approvals were required for conducting this study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McComb, S., Powers, L.C. & Larsen, A.E. Evaluating climate-driven fallowing for ecological connectivity of species at risk. Landsc Ecol 37, 3059–3077 (2022). https://doi.org/10.1007/s10980-022-01522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01522-9

Keywords

Navigation