Skip to main content
Log in

Multi-scale spatial ecology analyses: a Kullback information approach

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The way organisms are patterned in space dictates the outcome of many ecological processes such as growth, survival, colonization, and migration. The field of landscape ecology has developed quantitative metrics to describe spatial patterning using the concept of entropy. However, a general theory of how these patterns relate to one another within and between different organizational levels and over different spatial scales has remained incomplete.

Objectives

Review how statistical versions of entropy have been applied to detect spatial organization and propose a theoretical framework to use Kullback–Leibler relative entropy for cross-scale analyses on a landscape of any size.

Methods

Examine previous efforts using entropy in landscape ecology and introduce a Kullback Information Index as a next step in the science of scaling.

Results

Entropic indices can provide compositional and configurational information about a system and can be used to detect landscape patterns. Yet, most entropy-based metrics are scale-dependent, highlighting the need to find a common currency for comparative analysis across scales. The non-symmetric unitless property of the Kullback–Leibler relative entropy may remedy that since it is theoretically capable of comparing variables and scales. The proposed framework can be extended to describe any system that contains scalable modules of interest, which will advance scaling in landscape ecology and other disciplines.

Conclusions

The Kullback Information Index describes landscapes’ compositional and configurational patterns across scales. Since relative entropy is connected to information theory and thermodynamics, the framework’s results can be interpreted within a broader ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data is available in a supplementary folder. The figures were created with BioRender.com.

Code availability

Custom code is available as part of supplementary material.

References

  • Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E (2015) Tsallis entropy as a biomarker for detection of Alzheimer's disease. In 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 4166–4169

  • Altieri L, Cocchi D, Roli G (2018) A new approach to spatial entropy measures. Environ Ecol Stat 25(1):95–110

    Article  CAS  Google Scholar 

  • Boltzmann L (1872) Weitere Studien u ̈ber das Wa ̈rmegle- ichgewicht unter Gasmoleku ̈len [Further studies on the thermal equilibrium of gas molecules]. Sitzungsberichte Akademie Der Wissenschaften 66:275–370

    Google Scholar 

  • Chaimovich A, Shell MS (2010) Relative entropy as a universal metric for multiscale errors. Phys Rev E 81:060104

    Article  Google Scholar 

  • Chanda P, Costa E, Hu J, Sukumar S, Van Hemert J, Walia R (2020) Information theory in computational biology: where we stand today. Entropy 22(6):627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T (2006) Abundance-based similarity indices and their estimations when there are unseen species in samples. Biometrics 62:361–371

    Article  PubMed  Google Scholar 

  • Claramunt C (2005) A spatial form of diversity. Springer, Berlin, pp 218–231

    Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn Popul 298:312

    Google Scholar 

  • Corso G, Ferreira GM, Lewinsohn TM (2020) Mutual information as a general measure of structure in interaction networks. Entropy 22(5):528

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA (2016) Calculating the configurational entropy of a landscape mosaic. Landsc Ecol 31(3):481–489

    Article  Google Scholar 

  • Cushman SA (2018) Calculation of configurational entropy in complex landscapes. Entropy 20(4):298

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA (2021) Generalizing Boltzmann configurational entropy to surfaces point patterns and landscape mosaics. Entropy 23(12):1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly AJ, Baetens JM, De Baets B (2018) Ecological diversity: measuring the unmeasurable. Mathematics 6(7):119

    Article  Google Scholar 

  • Dechant A, Sasa SI (2020) Fluctuation–response inequality out of equilibrium. Proc Natl Acad Sci USA 117(12):6430–6436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eguchi S, Copas J (2006) Interpreting kullback–leibler divergence with the neyman–pearson lemma. J Multivar Anal 97(9):2034–2040

    Article  Google Scholar 

  • Frazier AE (2019) Emerging trajectories for spatial pattern analysis in landscape ecology. Landsc Ecol 34(9):2073–2082

    Article  Google Scholar 

  • Gao P, Li Z (2019) Computation of the Boltzmann entropy of a landscape: a review and a generalization. Landsc Ecol 34(9):2183–2196

    Article  Google Scholar 

  • Gao P, Zhang H, Li Z (2017) A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc Ecol 32(6):1133–1146

    Google Scholar 

  • Gao P, Zhang H, Wu Z (2021) Wasserstein metric-based Boltzmann entropy of a landscape mosaic: a clarification, correction, and evaluation of thermodynamic consistency. Landsc Ecol 36(3):815–827

    Article  Google Scholar 

  • Gardner RH (1999) RULE: map generation and a spatial analysis program. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis. Springer, New York, pp 280–303

    Chapter  Google Scholar 

  • Harte J (2011) Maximum entropy and ecology. Oxford University Publishing, Oxford

    Book  Google Scholar 

  • James PM, Fortin MJ (2013) Ecosystems and spatial patterns. In: Leemans R (ed) Ecological systems. Springer, New York, pp 101–124

    Chapter  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104(940):501–528

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620

    Article  Google Scholar 

  • Jaynes ET (1980) The minimum entropy production principle. Annu Rev Phys Chem 31:579–601

    Article  CAS  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Hol WG (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11(4):853–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  • Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97(4):616–628

    Article  Google Scholar 

  • Leibovici DG (2009) Defining spatial entropy from multivariate distributions of co-occurrences. In: International conference on spatial information theory. Springer, Berlin pp 392–404

  • Lesne A (2014) Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math Struct Comput Sci. https://doi.org/10.1017/S0960129512000783

    Article  Google Scholar 

  • Lopes FM, de Oliveira EA, Cesar RM (2011) Inference of gene regulatory networks from time series by Tsallis entropy. BMC Syst Biol 5(1):1–13

    Article  Google Scholar 

  • Ludovisi A, Taticchi MI (2006) Investigating beta diversity by Kullback–Leibler information measures. Ecol Model 192(1–2):299–313

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst

  • McQuarrie D (2000) Statistical mechanics. University Science Books, Sausalito

    Google Scholar 

  • Miller HJ (2004) Tobler’s first law and spatial analysis. Ann Assoc Am Geogr 94(2):284–289

    Article  Google Scholar 

  • Nowosad J, Gao P (2020) belg: a tool for calculating Boltzmann entropy of landscape gradients. Entropy 22(9):937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor MI, Pennell MW, Altermatt F, Matthews B, Melián CJ, Gonzalez A (2019) Principles of ecology revisited: integrating information and ecological theories for a more unified science. Front Ecol Evol 7:219

    Article  Google Scholar 

  • Rajaram R, Castellani B, Wilson AN (2017) Advancing Shannon entropy for measuring diversity in systems. Complexity 2017:1–10

    Article  Google Scholar 

  • Roach TNF (2020) Use and abuse of entropy in biology: a case for caliber. Entropy 22(12):1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Roach TNF, Nulton J, Sibani P, Rohwer F, Salamon P (2017) Entropy in the tangled nature model of evolution. Entropy 19(5):192

    Article  Google Scholar 

  • Roach TNF, Nulton J, Sibani P, Rohwer F, Salamon P (2019) Emergent structure in a stochastic model of ecological evolution. Ecol Model 401:129–133

    Article  Google Scholar 

  • Roach TNF, Salamon P, Nulton J, Andresen B, Felts B, Haas A, Rohwer F (2018) Application of finite-time and control thermodynamics to biological processes at multiple scales. J Non-Equilib Thermodyn 43(3):193–210

    Article  CAS  Google Scholar 

  • Roselli L, Stanca E, Ludovisi A, Durante G, Souza JSD, Dural M, Alp T, Bulent S, Gjoni V, Ghinis S, Basset A (2013) Multi-scale biodiversity patterns in phytoplankton from coastal lagoons: the Eastern Mediterranean. Trans Waters Bull 7(2):202–219

    Google Scholar 

  • Shalizi C (2007) 36–754, Advanced probability II or almost none of the theory of stochastic processes

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  • Shell MS (2008) The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys 129:144108

    Article  PubMed  Google Scholar 

  • Shell MS (2012) Systematic coarse-graining of potential energy landscapes and dynamics in liquids. J Chem Phys 137:084503

    Article  PubMed  Google Scholar 

  • Sherwin WB (2010) Entropy and information approaches to genetic diversity and its expression: genomic geography. Entropy 12(7):1765–1798

    Article  CAS  Google Scholar 

  • Sohoulande CD, Stone K, Singh VP (2019) Quantifying the probabilistic divergences related to time-space scales for inferences in water resource management. Agric Water Manag 217:282–291

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1):479–487

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20(1):171–197

    Article  Google Scholar 

  • Ulanowicz RE, Jørgensen SE, Fath BD (2006) Exergy, information and aggradation: an ecosystems reconciliation. Ecol Model 198:520–524

    Article  Google Scholar 

  • Villaverde AF, Ross J, Morán F, Banga JR (2014) MIDER: network inference with mutual information distance and entropy reduction. PLoS ONE 9(5):e96732

    Article  PubMed  PubMed Central  Google Scholar 

  • Vranken I, Baudry J, Aubinet M, Visser M, Bogaert J (2015) A review on the use of entropy in landscape ecology: heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landsc Ecol 30(1):51–65

    Article  Google Scholar 

  • Wang C, Zhao H (2018) Spatial heterogeneity analysis: introducing a new form of spatial entropy. Entropy 20(6):398

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geogr Inf Sci 6(1):6–19

    Google Scholar 

  • Zhang H, Wu ZW (2020) A head/tail breaks-based method for efficiently estimating the absolute Boltzmann entropy of numerical raster data. ISPRS Int J Geo Inf 9:103

    Article  CAS  Google Scholar 

  • Zhang H, Wu Z, Lan T, Chen Y, Gao P (2020) Calculating the Wasserstein metric-based Boltzmann entropy of a landscape mosaic. Entropy 22(4):381

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang X (2019) Calculating spatial configurational entropy of a landscape mosaic based on the Wasserstein metric. Landsc Ecol 34(8):1849–1858

    Article  Google Scholar 

  • Zhong J, Liu R, Chen P (2020) Identifying critical state of complex diseases by single-sample Kullback–Leibler divergence. BMC Genomics 21(1):1–15

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Joel Huckeba and Caleigh Cornell for providing helpful advice throughout the writing process. We are grateful for the anonymous reviewers and the editor for taking time to assess our manuscript, providing the authors with constructive and insightful comments.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the theory design, read, edited, and approved this manuscript.

Corresponding author

Correspondence to Ty N. F. Roach.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors consent the publication in Landscape Ecology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huckeba, G., Andresen, B. & Roach, T.N.F. Multi-scale spatial ecology analyses: a Kullback information approach. Landsc Ecol 38, 645–657 (2023). https://doi.org/10.1007/s10980-022-01514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01514-9

Keywords

Navigation