Skip to main content

Combining landscape and genetic graphs to address key issues in landscape genetics

Abstract

Context

All the components of landscape and genetic structures can be associated with the nodes and links of landscape graphs and genetic graphs. Yet, these graphs have long been used separately despite the potential for their combined use in landscape genetics.

Objectives

First, comparing these graphs could be an effective way to disentangle the influence of intra-patch features from that of inter-patch connectivity on genetic structure or to assess whether intra-population genetic diversity and inter-population genetic differentiation are sensitive to the same landscape influences.

Methods

Moreover, because graph pruning determines which connections between nodes are considered in calculating neighbourhood-based metrics or graph-based distances, comparing the metrics or distances derived from differently pruned graphs can be an effective way to identify the scale of landscape effects or the scale at which both gene flow and drift determine genetic differentiation. Similarly, comparing node partitions in both types of graphs could strengthen the validity of barrier identifications.

Results

Second, beyond mere comparisons, integration of landscape and genetic graphs through gravity models can further enhance their joint use for theoretical and applied objectives alike.

Conclusion

We thus believe that future research could illustrate and enhance the relevance of these methods for a wider range of applications in landscape genetics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The codes we used for the simulations are available on Figshare: https://doi.org/10.6084/m9.figshare.20374911.

References

  • Adamack AT, Gruber B (2014) Popgenreport: simplifying basic population genetic analyses in r. Methods Ecol Evol 5(4):384–387

    Article  Google Scholar 

  • Albert EM, Fortuna MA, Godoy JA, Bascompte J (2013) Assessing the robustness of networks of spatial genetic variation. Ecol Lett 16(s1):86–93

    PubMed  Article  Google Scholar 

  • Arnaud JF (2003) Metapopulation genetic structure and migration pathways in the land snail helix aspersa: influence of landscape heterogeneity. Landscape Ecol 18(3):333–346

    Article  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88(2):310–326

    PubMed  Article  Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32(5):818–830

    Article  Google Scholar 

  • Baranyi G, Saura S, Podani J, Jordán F (2011) Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol Ind 11(5):1301–1310

    Article  Google Scholar 

  • Bergsten A, Zetterberg A (2013) To model the landscape as a network: a practitioner’s perspective. Landsc Urban Plan 119:35–43

    Article  Google Scholar 

  • Bianconi G (2018) Multilayer networks: structure and function. Oxford University Press

    Book  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M et al (2012) Costs of dispersal. Biol Rev 87(2):290–312

    PubMed  Article  Google Scholar 

  • Boulanger E, Dalongeville A, Andrello M, Mouillot D, Manel S (2020) Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 15(1):1–13

    Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457

    CAS  PubMed  Article  Google Scholar 

  • Brodie JF, Mohd-Azlan J, Schnell JK (2016) How individual links affect network stability in a large-scale, heterogeneous metacommunity. Ecology 97(7):1658–1667

    PubMed  Article  Google Scholar 

  • Brooks C (2003) A scalar analysis of landscape connectivity. Oikos 433–439

  • Bruggeman DJ, Wiegand T, Fernandez N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (picoides borealis). Mol Ecol 19(17):3679–3691

    PubMed  Article  Google Scholar 

  • Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American Pikas. Ecol Appl 26(6):1660–1676

    PubMed  Article  Google Scholar 

  • Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys. Rev. E 70(6):066111

    Article  CAS  Google Scholar 

  • Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40(1):7–37

    Article  Google Scholar 

  • Creech TG, Epps CW, Monello RJ, Wehausen JD (2014) Using network theory to prioritize management in a desert bighorn sheep metapopulation. Landsc Ecol 29(4):605–619

    Article  Google Scholar 

  • Cross TB, Schwartz MK, Naugle DE, Fedy BC, Row JR, Oyler-McCance SJ (2018) The genetic network of greater sage-grouse: range-wide identification of keystone hubs of connectivity. Ecol Evol 8(11):1–19

    Article  Google Scholar 

  • Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27(3):369–380

    Article  Google Scholar 

  • Dale M, Fortin MJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  • Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 09:P09008

    Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121(2):161–170

    Article  Google Scholar 

  • DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Cur Landsc Ecol Rep 1(3):115–126

    Article  Google Scholar 

  • Duflot R, Avon C, Roche P, Bergès L (2018) Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study. J Nat Conserv 46:38–47

    Article  Google Scholar 

  • Dyer RJ (2015) Is there such a thing as landscape genetics? Mol Ecol 24(14):3518–3528

    PubMed  Article  Google Scholar 

  • Dyer RJ (2015) Population graphs and landscape genetics. Annu Rev Ecol Evol Syst 46:327–342

    Article  Google Scholar 

  • Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13(7):1713–1727

    PubMed  Article  Google Scholar 

  • Etherington TR (2012) Least-cost modelling on irregular landscape graphs. Landsc Ecol 27(7):957–968

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among dna haplotypes: application to human mitochondrial dna restriction data. Genetics 131(2):479–491

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ezard T, Travis JMJ (2006) The impact of habitat loss and fragmentation on genetic drift and fixation time. Oikos 114(2):367–375

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34(1):487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48(1):1–23

    Article  Google Scholar 

  • Fall A, Fortin MJ, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10(3):448–461

    Article  Google Scholar 

  • Farine DR, Whitehead H (2015) Constructing, conducting and interpreting animal social network analysis. J Anim Ecol 84(5):1144–1163

    PubMed  PubMed Central  Article  Google Scholar 

  • Fletcher RJ, Acevedo MA, Reichert BE, Pias KE, Kitchens WM (2011) Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci USA 108(48):19282–19287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fletcher RJ Jr, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI et al (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Article  Google Scholar 

  • Foltête JC, Vuidel G (2017) Using landscape graphs to delineate ecologically functional areas. Landsc Ecol 32(2):249–263

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G, Tournant P (2012) Integrating graph-based connectivity metrics into species distribution models. Landsc Ecol 27(4):557–569

    Article  Google Scholar 

  • Foltête JC, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  • Foltête JC, Savary P, Clauzel C, Bourgeois M, Girardet X, Saharoui Y, Vuidel G, Garnier S (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol 35(5):1035–52

    Article  Google Scholar 

  • Fortuna MA, Albaladejo RG, Fernández L, Aparicio A, Bascompte J (2009) Networks of spatial genetic variation across species. Proc Natl Acad Sci USA 106(45):19044–19049

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55

    Article  Google Scholar 

  • Garroway CJ, Bowman J, Wilson PJ (2011) Using a genetic network to parameterize a landscape resistance surface for fishers, martes pennanti. Mol Ecol 20(19):3978–3988

    PubMed  Article  Google Scholar 

  • Greenbaum G, Fefferman NH (2017) Application of network methods for understanding evolutionary dynamics in discrete habitats. Mol Ecol 26(11):2850–2863

    PubMed  Article  Google Scholar 

  • Greenbaum G, Templeton AR, Bar-David S (2016) Inference and analysis of population structure using genetic data and network theory. Genetics 202(4):1299–1312

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83(2):145

    PubMed  Article  Google Scholar 

  • Holderegger R, Gugerli F (2012) Where do you come from, where do you go? Directional migration rates in landscape genetics. Mol Ecol 21(23):5640–5642

    PubMed  Article  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914

    PubMed  Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27(7):929–941

    Article  Google Scholar 

  • Jackson ND, Fahrig L (2015) Habitat amount—not habitat configuration—best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31(5):951–968

    Article  Google Scholar 

  • Jordán F, Magura T, Tóthmérész B, Vasas V, Ködöböcz V (2007) Carabids (coleoptera: Carabidae) in a forest patchwork: a connectivity analysis of the bereg plain landscape graph. Landsc Ecol 22(10):1527–1539

    Article  Google Scholar 

  • Kadoya T (2009) Assessing functional connectivity using empirical data. Popul Ecol 51(1):5–15

    Article  Google Scholar 

  • Keitt T, Urban D, Milne B (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1(1)

  • Keller D, Holderegger R, Strien MJ (2013) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22(9):2467–2482

    PubMed  Article  Google Scholar 

  • Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B 272(1562):553–560

    PubMed  PubMed Central  Article  Google Scholar 

  • Koen EL, Bowman J, Wilson PJ (2016) Node-based measures of connectivity in genetic networks. Mol Ecol Resour 16(1):69–79

    CAS  PubMed  Article  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11(12):514–517

    CAS  PubMed  Article  Google Scholar 

  • Kuismin MO, Ahlinder J, Sillanpää MJ (2017) Cone: Community oriented network estimation is a versatile framework for inferring population structure in large scale sequencing data. G3 Genes Genomes Genetics pp g3–300131

  • Legendre P, Fortin MJ (2010) Comparison of the mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10(5):831–844

    PubMed  Article  Google Scholar 

  • Leroux SJ, Albert CH, Lafuite AS, Rayfield B, Wang S, Gravel D (2017) Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography 40(1):36–47

    Article  Google Scholar 

  • Lindenmayer DB, Blanchard W, Foster CN, Scheele BC, Westgate MJ, Stein J, Crane M, Florance D (2020) Habitat amount versus connectivity: an empirical study of bird responses. Biol Conserv 241:108377

    Article  Google Scholar 

  • Luque S, Saura S, Fortin MJ (2012) Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landsc Ecol 27(2):153–157

    Article  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621

    PubMed  Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim Biophys Acta BBA 405(2):442–451

    CAS  PubMed  Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31(6):1177–1194

    Article  Google Scholar 

  • Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8(12):1717–1724

    Article  Google Scholar 

  • Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48(6):1543–1547

    Article  Google Scholar 

  • Murphy M, Dyer R, Cushman SA (2015) Graph theory and network models in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L (eds) Landscape genetics: concepts, methods, applications, 1st edn. Wiley, New York, pp 165–180

    Chapter  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19(17):3634–3649

    PubMed  Article  Google Scholar 

  • Naujokaitis-Lewis IR, Rico Y, Lovell J, Fortin MJ, Murphy MA (2013) Implications of incomplete networks on estimation of landscape genetic connectivity. Conserv Genet 14(2):287–298

    Article  Google Scholar 

  • Pereira M, Segurado P, Neves N (2011) Using spatial network structure in landscape management and planning: a case study with pond turtles. Landsc Urban Plan 100(1):67–76

    Article  Google Scholar 

  • Peterson EE, Hanks EM, Hooten MB, Ver Hoef JM, Fortin MJ (2018) Spatially-structured statistical network models for landscape genetics. Ecol Monogr 89(2):e01355

    Google Scholar 

  • Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landsc Ecol 24(2):253–266

    Article  Google Scholar 

  • Prunier JG, Dubut V, Chikhi L, Blanchet S (2017) Contribution of spatial heterogeneity in effective population sizes to the variance in pairwise measures of genetic differentiation. Methods Ecol Evol 8(12):1866–1877

    Article  Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858

    PubMed  Article  Google Scholar 

  • Reichert BE, Fletcher RJ Jr, Cattau CE, Kitchens WM (2016) Consistent scaling of population structure across landscapes despite intraspecific variation in movement and connectivity. J Anim Ecol 85(6):1563–1573

    PubMed  Article  Google Scholar 

  • Robertson EP, Fletcher RJ, Cattau CE, Udell BJ, Reichert BE, Austin JD, Valle D (2018) Isolating the roles of movement and reproduction on effective connectivity alters conservation priorities for an endangered bird. Proceedings of the National Academy of Sciences

  • Rozenfeld AF, Arnaud-Haond S, Hernández-García E, Eguíluz VM, Serrão EA, Duarte CM (2008) Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci USA 105(48):18824–18829

    PubMed  PubMed Central  Article  Google Scholar 

  • Saura S (2021) The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. J Biogeogr 48(1):11–22

    Article  Google Scholar 

  • Saura S, de la Fuente B (2017) Connectivity as the amount of reachable habitat: conservation priorities and the roles of habitat patches in landscape networks. In: Gergel SE, Turner MG (eds) Learning landscape ecology: a practical guide to concepts and techniques. Springer, Berlin, pp 229–254

    Chapter  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83(2):91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537

    Google Scholar 

  • Saura S, Bodin Ö, Fortin MJ (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182

    Article  Google Scholar 

  • Savary P, Foltête JC, Moal H, Vuidel G, Garnier S (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21(4):1167–1185.

    PubMed  Article  Google Scholar 

  • Savary P, Foltête JC, Moal H, Vuidel G, Garnier S (2021) graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods Ecol Evol 12(3):539–547.

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11(2):375–385

    Article  Google Scholar 

  • Serrano MÁ, Boguná M, Vespignani A (2009) Extracting the multiscale backbone of complex weighted networks. Proc Natl Acad Sci USA 106(16):6483–6488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shirk A, Cushman S (2011) sgd: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934

    CAS  PubMed  Article  Google Scholar 

  • Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S, Dezzani R, Delmelle E, Vierling L, Waits L (2007) Putting the “landscape’’ in landscape genetics. Heredity 98(3):128–142

    CAS  PubMed  Article  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514

    PubMed  Article  Google Scholar 

  • Tenenhaus M (1998) La régression PLS: théorie et pratique. Editions TECHNIP

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R, Ghazoul J, Kienast F, Bolliger J (2014) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow. Ecol Appl 24(2):327–339

    PubMed  Article  Google Scholar 

  • Van Strien MJ, Holderegger R, Van Heck HJ (2015) Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114(1):27

    PubMed  Article  Google Scholar 

  • Wagner HH, Fortin MJ (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14(2):253–261

    Article  Google Scholar 

  • Watts AG, Schlichting PE, Billerman SM, Jesmer BR, Micheletti S, Fortin MJ, Funk WC, Hapeman P, Muths E, Murphy MA (2015) How spatio-temporal habitat connectivity affects amphibian genetic structure. Front Genet 6:275

    PubMed  PubMed Central  Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    CAS  PubMed  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27(6):777–797

    Article  Google Scholar 

  • Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? validating common connectivity approaches with dispersal data. Diversity Distrib. https://doi.org/10.1111/ddi.12742

    Article  Google Scholar 

  • Zero VH, Barocas A, Jochimsen DM, Pelletier A, Giroux-Bougard X, Trumbo DR, Castillo JA, Evans Mack D, Linnell MA, Pigg RM et al (2017) Complementary network-based approaches for exploring genetic structure and functional connectivity in two vulnerable, endemic ground squirrels. Front Genet 8:81

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This study is part of a PhD project supported by the ARP-Astrance company under a CIFRE contract supervised and partly funded by the ANRT (Association Nationale de la Recherche et de la Technologie). We are particularly grateful to ARP-Astrance team for its constant support along the project. This work is part of the project CANON that was supported by the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-0003). We thank Christopher Sutcliffe for revising the English manuscript.

Funding

This study was funded by Agence Nationale de la Recherche [Grant No. ISITE-BFC (ANR-15-IDEX-0003)].

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Paul Savary and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paul Savary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 36 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savary, P., Foltête, JC., Moal, H. et al. Combining landscape and genetic graphs to address key issues in landscape genetics. Landsc Ecol 37, 2293–2309 (2022). https://doi.org/10.1007/s10980-022-01489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01489-7

Keywords

  • Landscape genetics
  • Networks
  • Graph theory
  • Habitat connectivity
  • Dispersal
  • Gene flow