Skip to main content

Advertisement

Log in

Species–genetic diversity correlations through the lens of spatial autocorrelation: insights from high Andean wetlands

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Understanding species–genetic diversity relationships is key to foster holistic conservation approaches aimed at preserving biodiversity across multiple dimensions. Despite the facts that genetic and species diversity are likely to be spatially structured and that species–genetic diversity correlations (SGDCs) reveal coincident spatial patterns between the two diversity levels, spatial autocorrelation has been largely overlooked.

Objectives

We assessed the benefits of investigating species–genetic diversity relationships through a spatial framework using high Andean wetlands from Chile as a case study system.

Methods

Genetic diversity was estimated using amplified fragment length polymorphism markers for five abundant species and species diversity was assessed as taxonomic richness for two communities (plants and benthic macroinvertebrates). We tested SGDCs using Moran Spectral Randomizations (MSR), and used a causal modelling procedure to elucidate relationships between species and genetic diversity and their coincident spatial structures.

Results

While traditional correlation tests detected significant SGDCs in most cases (i.e. nine), only three species–genetic relationships reached significance or borderline significance with the MSR approach. In all these cases, genetic and species diversity displayed similar spatial autocorrelation patterns. The causal modelling analyses suggested direct effects of genetic diversity on plant richness for species involved in nutrient cycling.

Conclusions

Our study provides new perspectives on species–genetic diversity relationships in high Andean wetlands. In addition, it demonstrates the usefulness of causal modelling approaches and the importance of incorporating spatial information to advance understanding of the processes driving both species and genetic diversity, as well as their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Raw data of the AFLP genotypes (i.e. band presence and absence) for each of the five species are available at https://doi.org/10.5061/dryad.4vr37. Benthic macroinvertebrate data are reported in Table S1 and plant community data can be found in Dryad at https://doi.org/10.5061/dryad.3p1tj06.

References

  • Agrawal AA (2003) Community genetics: new insights into community ecology by integrating population genetics. Ecology 84:543–544

    Article  Google Scholar 

  • Antonovics J (1992) Toward community genetics. In: Fritz RSSE (ed) Plant resistance to herbivores and pathogens: ecology, evolution, genetics. The University of Chicago Press, Chicago, pp 426–449

    Google Scholar 

  • Arnan X, Cerda X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ. https://doi.org/10.7717/peerj.1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros M (1953) Las Juncáceas de Argentina, Chile y Uruguay. Darwiniana 10:279–460

    Google Scholar 

  • Bauman D, Drouet T, Dray S, Vleminckx J (2018) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41:1638–1649

    Article  Google Scholar 

  • Bertin A, Alvarez E, Gouin N et al (2015) Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw Biol 60:297–310

    Article  Google Scholar 

  • Bertin A, Gouin N, Baumel A et al (2017) Genetic variation of loci potentially under selection confounds species–genetic diversity correlations in a fragmented habitat. Mol Ecol 26:431–443

    Article  PubMed  Google Scholar 

  • Biswas SR, Mallik AU, Braithwaite NT, Wagner HH (2016) A conceptual framework for the spatial analysis of functional trait diversity. Oikos 125:192–200

    Article  Google Scholar 

  • Biswas S, MacDonald R, Chen H (2017) Disturbance increases negative spatial autocorrelation in species diversity. Landsc Ecol 32:823–834

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Braga J, ter Braak CJF, Thuiller W, Dray S (2018) Integrating spatial and phylogenetic information in the fourth-corner analysis to test trait-environment relationships. Ecology 99:2667–2674

    Article  PubMed  Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobon C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33

    Article  Google Scholar 

  • Cavieres LA, Brooker RW, Butterfield BJ et al (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202

    Article  PubMed  Google Scholar 

  • Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253

    Article  Google Scholar 

  • Chimner RA, Lemly JM, Cooper DJ (2010) Mountain Fen distribution, types andrestoration priorities, San Juan Mountains, Colo, USA. Wetlands 30:763–771

    Article  Google Scholar 

  • Clappe S, Dray S, Peres-Neto PR (2018) Beyond neutrality: disentangling the effects of species sorting and spurious correlations in community analysis. Ecology 99:1737–1747

    Article  PubMed  Google Scholar 

  • Comas X, Terry N, Hribljan JA et al (2017) Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground-penetrating radar (GPR). J Geophys Res Biogeosci 122:370–386

    Article  CAS  Google Scholar 

  • Coronel JS, Declerck S, Maldonado M, Ollevier F, Brendonck L (2004) Temporary shallow pools in high-Andes ‘bofedal’ peatlands: a limnological characterization at different spatial scales. Arch Des Sci 57:85–96

    CAS  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • Crabot J, Clappe S, Dray S, Datry T (2019) Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol Evol 10:532–540

    Article  Google Scholar 

  • Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968

    Article  CAS  PubMed  Google Scholar 

  • Dale MRT, Fortin MJ (2010) From graphs to spatial graphs  Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  • de Paula MD, Forrest M, Langan L et al (2021) Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytol 232:551–566

    Article  Google Scholar 

  • Dray S (2011) A new perspective about Moran’s coefficient: spatial autocorrelation as a linear regression problem. Geogr Anal 43:127–141

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196:483–493

    Article  Google Scholar 

  • Dray S, Pelissier R, Couteron P et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275

    Article  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Pierre Legendre P, Naima Madi N, Wagner H (2020) adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.1-1. https://CRAN.R-project.org/package=adespatial

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Elliott JM (2008) The ecology of riffle beetles (Coleoptera: Elmidae). Freshw Rev 1:189–203

    Article  Google Scholar 

  • Etienne RS, Olff H (2004) A novel genealogical approach to neutral biodiversity theory. Ecol Lett 7:170–175

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120

    Article  CAS  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis. A guide for ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fourtune L, Paz-Vinas I, Loot G, Prunier JG, Blanchet S (2016) Lessons from the fish: a multi-species analysis reveals common processes underlying similar species–genetic diversity correlations. Freshw Biol 61:1830–1845

    Article  Google Scholar 

  • Fu BJ, Liu SL, Ma KM, Zhu YG (2004) Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing, China. Plant Soil 261:47–54

    Article  CAS  Google Scholar 

  • Giari L, Fano EA, Castaldelli G, Grabner D, Sures B (2020) The ecological importance of amphipod–parasite associations for aquatic ecosystems. Water. https://doi.org/10.3390/w12092429

    Article  Google Scholar 

  • Griffith DA (1992) What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics. L’Espace géographique 21:265–280

    Article  Google Scholar 

  • Griffith DA, Arbia G (2010) Detecting negative spatial autocorrelation in georeferenced random variables. Int J Geogr Inf Sci 24:417–437

    Article  Google Scholar 

  • He TH, Lamont BB (2010) Species versus genotypic diversity of a nitrogen-fixing plant functional group in a metacommunity. Popul Ecol 52:337–345

    Article  Google Scholar 

  • Hebbali A (2020) olsrr: Tools for building OLS regression models. R package version 0.5.0

  • Hein C, Moniem HEA, Wagner HH (2021) Can we compare effect size of spatial genetic structure between studies and species using Moran eigenvector maps?  Front Ecol Evol. https://doi.org/10.3389/fevo.2021.612718

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling 6:1–55

    Article  Google Scholar 

  • Jacobus LM, Macadam CR, Sartori M (2019) Mayflies (Ephemeroptera) and their contributions to ecosystem services. Insects 10:170

    Article  PubMed Central  Google Scholar 

  • Kahilainen A, Puurtinen M, Kotiaho JS (2014) Conservation implications of species–genetic diversity correlations. Glob Ecol Conserv 2:315–323

    Article  Google Scholar 

  • Kiesling R (2009) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kikvidze Z, Brooker RW, Butterfield BJ et al (2015) The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology 96:2064–2069

    Article  PubMed  Google Scholar 

  • Kühn I, Dormann CF (2012) Less than eight (and a half) misconceptions of spatial analysis. J Biogeogr 39:995–998

    Article  Google Scholar 

  • Lamy T, Jarne P, Laroche F et al (2013) Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Mol Ecol 22:4445–4456

    Article  CAS  PubMed  Google Scholar 

  • Lamy T, Laroche F, David P, Massol F, Jarne P (2017) The contribution of species–genetic diversity correlations to the understanding of community assembly rules. Oikos 126:759–771

    Article  Google Scholar 

  • Laroche F, Jarne P, Lamy T, David P, Massol F (2015) A neutral theory for interpreting correlations between species and genetic diversity in communities. Am Nat 185:59–69

    Article  PubMed  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation—trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre PL (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Li ZW, Gao P, You YC (2018) Characterizing hydrological connectivity of artificial ditches in zoige peatlands of Qinghai-Tibet plateau. Water 10:1364

    Article  Google Scholar 

  • Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere. https://doi.org/10.1002/ecs2.2999

    Article  Google Scholar 

  • Lyons CL, Lindo Z (2020) Above- and belowground community linkages in boreal peatlands. Plant Ecol 221:615–632

    Article  Google Scholar 

  • Ma MY, Zhu YJ, Wei YY, Zhao NN (2021) Soil nutrient and vegetation diversity patterns of alpine wetlands on the Qinghai-Tibetan plateau. Sustainability. https://doi.org/10.3390/su116221

    Article  Google Scholar 

  • Marchesini A, Vernesi C, Battisti A, Ficetola GF (2018) Deciphering the drivers of negative species–genetic diversity correlation in Alpine amphibians. Mol Ecol 27:4916–4930

    Article  PubMed  Google Scholar 

  • Mazerolle MJ (2019) AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3-1

  • Millennium Ecosystem Assessment (MEA) (2015) Ecosystems and human well-being: wetlands and water synthesis. Word Resource Institute, Washington

    Google Scholar 

  • Munkemuller T, de Bello F, Meynard CN et al (2012) From diversity indices to community assembly processes: a test with simulated data. Ecography 35:468–480

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Pugnaire FI, Losapio G, Schob C (2021) Species interactions involving cushion plants in high-elevation environments under a changing climate. Ecosistemas. https://doi.org/10.7818/ecos.2186

    Article  Google Scholar 

  • Puscas M, Taberlet P, Choler P (2008) No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers Distrib 14:852–861

    Article  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw. https://doi.org/10.18637/jss.v048.i02

    Article  Google Scholar 

  • Rundel PW, Palma B (2000) Preserving the unique puna ecosystems of the Andean Altiplano: a descriptive account of Lauca National Park, Chile. Mt Res Dev 20:262–271

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG et al (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Scott S, Dorador C, Oyanedel JP et al (2015) Microbial diversity and trophic components of two high altitude wetlands of the Chilean Altiplano. Gayana 79:45–56

    Google Scholar 

  • Segnini A, Posadas A, Quiroz R et al (2010) Spectroscopic assessment of soil organic matter in wetlands from the high Andes. Soil Sci Soc Am J 74:2246–2253

    Article  CAS  Google Scholar 

  • Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655

    Article  Google Scholar 

  • Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79:245–255

    Article  Google Scholar 

  • Taberlet P, Zimmermann NE, Englisch T et al (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol Lett 15:1439–1448

    Article  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  CAS  PubMed  Google Scholar 

  • Troncoso AJ, Bertin A, Osorio R, Arancio G, Gouin N (2017) Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico. Conserv Genet 18:1047–1060

    Article  Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781

    Article  Google Scholar 

  • Vellend M, Lajoie G, Bourret A, Murria C, Kembel SW, Garant D (2014) Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol Ecol 23:2890–2901

    Article  PubMed  Google Scholar 

  • Vila Pinto I (2002) Sistemas intertropicales de altura: humedales altiplanicos. CYTED XVII C. y. F. C. V. U. Santiago, Chile

    Google Scholar 

  • Villagrán C (2006) Pascua Lama: Amenaza a la biodiversidad. Oceana, Santiago

    Google Scholar 

  • Wagner HH, Dray S (2015) Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods Ecol Evol 6:1169–1178

    Article  Google Scholar 

  • Watanabe K, Monaghan MT (2017) Comparative tests of the species–genetic diversity correlation at neutral and nonneutral loci in four species of stream insect. Evolution 71:1755–1764

    Article  PubMed  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Whitlock R (2014) Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J Ecol 102:857–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Xu WM, Liu L, He TH et al (2016) Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest. Sci Rep. https://doi.org/10.1038/srep20652

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao RM, Zhang H, An LZ (2020) Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environ Sci Pollut Res 27:17339–17349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Craig Weideman for revising the English of the manuscript. La Junta de Vigilancia del Elqui, la Comunidad Agrícola los Huascoaltinos, La Sociedad de Parceleros de Coiron, La Sociedad de Parceleros de San Agustın, La Sociedad de Parceleros Hacienda Illapel, la Hacienda Tulahuen Oriente, la Hacienda El Maiten de Pedregal and la Hacienda El Bosque kindly gave access to private wetlands. E. Álvarez, R. Osorio, G. Arancio, C. Verdugo, M. Rivera, L. Cifuentes, R. Hereme and A. Troncoso participated in fieldwork or data production. We also thank two anonymous reviewers for insightful comments and discussions on previous versions of the manuscript. This work was financed by the Dirección de Investigación y Desarrollo de la Universidad de La Serena (DIDULS), DIDULS Regular PR192126.

Funding

This work was financed by the Dirección de Investigación y Desarrollo de la Universidad de La Serena (DIDULS), DIDULS Regular PR192126.

Author information

Authors and Affiliations

Authors

Contributions

AB conceived the study; AB and AL analysed the data; AB led the writing of the manuscript and wrote the first draft of the manuscript. NG and AB revised the first draft and all authors contributed to revisions of the final draft and gave final approval for publication.

Corresponding author

Correspondence to Angéline Bertin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Consent to participate

All authors contributed to this study.

Consent for publication

All authors agree with the content of this manuscript and consent for its publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertin, A., Lozada, A. & Gouin, N. Species–genetic diversity correlations through the lens of spatial autocorrelation: insights from high Andean wetlands. Landsc Ecol 37, 2399–2412 (2022). https://doi.org/10.1007/s10980-022-01480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01480-2

Keywords

Navigation