Skip to main content
Log in

Comprehensively evaluating the performance of species distribution models across clades and resolutions: choosing the right tool for the job

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species distribution modeling (SDM) is an integral tool for conservation, biogeography, and climate change biology. However, practioners have to choose from increasingly numerous SDM algorithms performing well under different conditions, including clade and resolution.

Objectives

To identify the most suitable SDM algorithms for trees, birds, mammals, and insects, uncover the driving factors of predictive performance, and examine how resolution affects performance and variable importance.

Methods

We use 27 SDM implementations, including random forests (RF), boosted regression trees (BRT), and Mahalanobis distance (MAH), and a comprehensive dataset of 49 species in Europe (trees, birds, mammals, and insects) to fit a total of 19,845 models, at 20 km, 10 km, and 5 km resolution. For selected species, we also compare the mapped predictions of 3 algorithms, and assess how variable importance changes with resolution for BRT.

Results

RF and BRT outperformed in terms of model performance (AUC = 0.938) for all clades (but not species), whereas decision trees, MaxLike, and Lasso overall underperformed (AUC = 0.848). The performance majorly depended on both clade (F = 101.4) and its interaction with resolution (F = 133.2), and displayed a general decline with resolution, while variable importance exhibited complex shifts in response to resolution.

Conclusions

RF and BRT are highly recommended but may require bias correction methods, whereas decision trees appeared unfavorable—particularly at higher resolutions. Given the complicated picture at the species level, varying tendencies to overfit, and resolution effects on both model performance and variable importance, we urge to routinely explore a range of algorithms, parametrizations, and resolutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve (of the receiver-operating characteristic)

BRT:

Boosted regression trees

BRTt:

Tuned BRT

CART:

Classification and regression trees

CCR:

Correct classification rate

FDA:

Flexible discriminant analysis

GAM:

Generalized additive models

GBIF:

Global biodiversity information facility

GLM:

Generalized linear models

GLMP:

GLM using orthogonal polynomials

Lasso:

GLM with Lasso regularization

MAH:

Mahalanobis distance

MARS:

Multivariate adaptive regression splines

MDA:

Mixture discriminant analysis

MLP:

Multi-layer perceptron

MXE:

MaxEnt (implemented in maxnet R package)

MXElh:

MXE with linear & hinge features

MXElq:

MXE with linear & quadratic features

MXL:

Maximum Likelihood

PHI:

Yule’s Phi (also known as Matthew’s correlation coefficient)

RBF:

Radial basis function neural network

RF:

Random forest

RFt:

Tuned RF

RNGR:

Ranger (fast implementation of RF)

RPRT:

Recursive partitioning and regression trees

SDM:

Species distribution modeling

SEN:

Sensitivity

SPE:

Specificity

SVM:

Support vector machines

SVMt:

Tuned SVM

TSS:

True skill statistic

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5:170191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Gutiérrez J, Carvalheiro LG, Polce C et al (2013) Fit-for-purpose: species distribution model performance depends on evaluation criteria—Dutch Hoverflies as a case study. PLoS ONE 8:e63708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232.

    Article  Google Scholar 

  • Amatulli G, Domisch S, Tuanmu M-N et al (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci Data 5:180040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Modell 222:2796–2811.

    Article  Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47.

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338.

    Article  Google Scholar 

  • Barbosa AM, Real R, Muñoz AR, Brown JA (2013) New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers Distrib 19:1333–1338.

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data 5:180214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck J, Böller M, Erhardt A, Schwanghart W (2014) Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol Inform 19:10–15.

    Article  Google Scholar 

  • Bedia J, Herrera S, Gutiérrez JM (2013) Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Glob Planet Change 107:1–12.

    Article  Google Scholar 

  • Benkendorf DJ, Hawkins CP (2020) Effects of sample size and network depth on a deep learning approach to species distribution modeling. Ecol Inform 60:101137.

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1994) The distribution of body sizes of the world’s bird species. Oikos 70:127.

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1998) The distribution of mammal body masses. Divers Distrib 4:121–133.

    Article  Google Scholar 

  • Bobrowski M, Weidinger J, Schickhoff U (2021) Is new always better? Frontiers in global climate datasets for modeling treeline species in the himalayas. Atmosphere (Basel) 12:543

    Article  Google Scholar 

  • Boria RA, Blois JL (2018) The effect of large sample sizes on ecological niche models: analysis using a North American rodent, Peromyscus maniculatus. Ecol Modell 386:83–88.

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2017) A single-algorithm ensemble approach to estimating suitability and uncertainty: cross-time projections for four Malagasy tenrecs. Divers Distrib 23:196–208.

    Article  Google Scholar 

  • Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276.

    Article  Google Scholar 

  • Boyce MS, McDonald LL (1999) Relating populations to habitats using resource selection functions. Trends Ecol Evol 14:268–272.

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32.

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Routledge, England

    Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2:667–680.

    Article  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:1–27.

    Article  Google Scholar 

  • Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Connor T, Hull V, Viña A et al (2018) Effects of grain size and niche breadth on species distribution modeling. Ecography (cop) 41:1270–1282.

    Article  Google Scholar 

  • de Vries JPR, Koma Z, WallisDeVries MF, Kissling WD (2021) Identifying fine-scale habitat preferences of threatened butterflies using airborne laser scanning. Divers Distrib 27:1251–1264.

    Article  Google Scholar 

  • Deblauwe V, Droissart V, Bose R et al (2016) Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob Ecol Biogeogr 25:443–454.

    Article  Google Scholar 

  • Dubuis A, Giovanettina S, Pellissier L et al (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci 24:593–606.

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography (cop) 32:66–77.

    Article  Google Scholar 

  • Elith JH, Graham CP, Anderson R et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (cop) 29:129–151.

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813.

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57.

    Article  Google Scholar 

  • Elith J, Simpson J, Hirsch M, Burgman MA (2013) Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australas Plant Pathol 42:43–51.

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274.

    Article  Google Scholar 

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Modell 160:115–130.

    Article  CAS  Google Scholar 

  • Feeley KJ, Silman MR (2011) Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers Distrib 17:1132–1140

    Article  Google Scholar 

  • Feeley KJ, Silman MR (2010) Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering. J Biogeogr 37:733–740

    Article  Google Scholar 

  • Ferrier S, Watson G (1997) An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. NSW National Parks and Wildlife Service, Environment Australia

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.

    Article  Google Scholar 

  • Freitas GHS, Costa LM, Silva PHVBP et al (2019) Spatial ecology and conservation of the microendemic ovenbird Cipo Cinclodes (Cinclodes espinhacensis) from the Brazilian highlands. J F Ornithol 90:128–142

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Google Scholar 

  • Gorshkov YA (2006) The spatiotemporal structure of population in the muskrat (Ondatra zibethicus). Russ J Ecol 37:41–45.

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340.

    Article  Google Scholar 

  • Guisan A, Theurillat J-P (2000) Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess 1:307–320.

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186.

    Article  Google Scholar 

  • Guo C, Lek S, Ye S et al (2015) Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol Modell 306:67–75

    Article  Google Scholar 

  • Guo F, Lenoir J, Bonebrake TC (2018) Land-use change interacts with climate to determine elevational species redistribution. Nat Commun 9:1315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138.

    Article  Google Scholar 

  • Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530.

    Article  CAS  PubMed  Google Scholar 

  • Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270.

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall/CRC, London

    Google Scholar 

  • Hengl T, De Jesus JM, Heuvelink GBM et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12:e0169748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (cop) 29:773–785.

    Article  Google Scholar 

  • Iturbide M, Bedia J, Herrera S et al (2015) A framework for species distribution modelling with improved pseudo-absence generation. Ecol Modell 312:166–174.

    Article  Google Scholar 

  • Johnson CM, Johnson LB, Richard C, Beasley V (2002) Predicting the occurrence of amphibians: an assessment of multiple-scale models. In: Scott JM, Heglund PJ, Samson F et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Covelo, CA, pp 157–170

    Google Scholar 

  • Kalinkat G, Jochum M, Brose U, Dell AI (2015) Body size and the behavioral ecology of insects: linking individuals to ecological communities. Curr Opin Insect Sci 9:24–30.

    Article  PubMed  Google Scholar 

  • Karanasios P, Wunderlich RF, Mukhtar H et al (2021) Exploring hybrid consensus models to assess roadkill. J Environ Manag 294:112886.

    Article  Google Scholar 

  • Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karger DN, Conrad O, Böhner J, et al (2018) Data from: Climatologies at high resolution for the earth’s land surface areas. In: Dryad. https://doi.org/10.5061/dryad.kd1d4

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350.

    Article  PubMed  Google Scholar 

  • Larkin MF, Davis TR, Harasti D et al (2021) The rapid decline of an endangered temperate soft coral species. Estuar Coast Shelf Sci 255:107364.

    Article  Google Scholar 

  • Leroy B, Delsol R, Hugueny B et al (2018) Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002.

    Article  Google Scholar 

  • Lin YP, Anthony J, Lin WC et al (2019) Spatiotemporal identification of roadkill probability and systematic conservation planning. Landsc Ecol 34:717–735.

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography (cop) 28:385–393.

    Article  Google Scholar 

  • Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography (cop) 34:232–243.

    Article  CAS  Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789.

    Article  Google Scholar 

  • Low BW, Zeng Y, Tan HH, Yeo DCJ (2021) Predictor complexity and feature selection affect maxent model transferability: evidence from global freshwater invasive species. Divers Distrib 27:497–511.

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.

    Article  CAS  PubMed  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69.

    Article  Google Scholar 

  • Mauri A, Strona G, San-Miguel-Ayanz J (2017) EU-forest, a high-resolution tree occurrence dataset for Europe. Sci Data 4:160123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazurowski MA, Habas PA, Zurada JM et al (2008) Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw 21:427–436.

    Article  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL

    Book  Google Scholar 

  • McCune B (2007) Improved estimates of incident radiation and heat load using non- parametric regression against topographic variables. J Veg Sci 18:751–754.

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606.

    Article  Google Scholar 

  • Meynard CN, Quinn JF (2007) Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J Biogeogr 34:1455–1469.

    Article  Google Scholar 

  • Mitchell PJ, Monk J, Laurenson L (2017) Sensitivity of fine-scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods Ecol Evol 8:12–21.

    Article  Google Scholar 

  • Mota-Vargas C, Rojas-Soto OR (2016) Taxonomy and ecological niche modeling: implications for the conservation of wood partridges (genus Dendrortyx). J Nat Conserv 29:1–13.

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205.

    Article  Google Scholar 

  • Naimi B, Araújo MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (cop) 39:368–375.

    Article  Google Scholar 

  • Naimi B, Hamm NAS, Groen TA et al (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography (cop) 37:191–203.

    Article  Google Scholar 

  • Naimi B, Skidmore AK, Groen TA, Hamm NAS (2011) Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. J Biogeogr 38:1497–1509.

    Article  Google Scholar 

  • Nathan R, Katul GG, Horn HS et al (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12.

    Article  Google Scholar 

  • Pearman PB, D’Amen M, Graham CH et al (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography (cop) 33:990–1003.

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371.

    Article  Google Scholar 

  • Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422.

    Article  CAS  PubMed  Google Scholar 

  • Petersen MJ (2013) Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula). Biol Invasions 15:885–897.

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: an open-source release of maxent. Ecography (cop) 40:887–893.

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259.

    Article  Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Saarinen K (2008) Species traits are associated with the quality of bioclimatic models. Glob Ecol Biogeogr 17:403–414.

    Article  Google Scholar 

  • Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136.

    Article  Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643.

    Article  Google Scholar 

  • Reiss H, Cunze S, König K et al (2011) Species distribution modelling of marine benthos: a north sea case study. Mar Ecol Prog Ser 442:71–86.

    Article  Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281.

    Article  PubMed  Google Scholar 

  • Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554.

    Article  Google Scholar 

  • Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave desert. J Wildl Manage 71:1419–1426.

    Article  Google Scholar 

  • Sarasola JH, Zanón-Martínez JI, Costán AS, Ripple WJ (2016) Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds. Sci Rep 6:19647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568.

    Article  Google Scholar 

  • Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43.

    Article  PubMed  Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6:5973–5986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shitara T, Nakamura Y, Matsui T et al (2018) Formation of disjunct plant distributions in Northeast Asia: a case study of Betula davurica using a species distribution model. Plant Ecol 219:1105–1115.

    Article  Google Scholar 

  • Singh H, Kumar N, Kumar M, Singh R (2020) Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range-restricted vulnerable bird species of the Himalayan region, in response to climate change. Clim Risk Manag 29:100241.

    Article  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci U S A 106:19644–19650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song W, Kim E, Lee D et al (2013) The sensitivity of species distribution modeling to scale differences. Ecol Modell 248:113–118

    Article  Google Scholar 

  • Stewart SB, Choden K, Fedrigo M et al (2017) The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan. Int J Climatol 37:897–909

    Article  Google Scholar 

  • Stockwell DR, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13

    Article  Google Scholar 

  • Suárez-Seoane S, Virgós E, Terroba O et al (2014) Scaling of species distribution models across spatial resolutions and extents along a biogeographic gradient. The case of the Iberian mole Talpa occidentalis. Ecography (cop) 37:279–292

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 80(240):1285–1293

    Article  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KA, Keeler-Wolf T, Franklin J (2002) A comparison of fine- and coarse-resolution environmental variables toward predicting vegetation distribution in the Mojave desert. In: Scott JM, Heglund PJ, Samson F et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Covelo, CA, pp 133–139

    Google Scholar 

  • Thuiller W (2013) On the importance of edaphic variables to predict plant species distributions—limits and prospects. J Veg Sci 24:591–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14:669–680

    Article  Google Scholar 

  • Tobalske C (2002) Effects of spatial scale on the predictive ability of habitat models for the green woodpecker in Switzerland. In: Scott JM, Heglund PJ, Samson F et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Covelo, CA, pp 197–204

    Google Scholar 

  • Townsend Peterson A, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and maxent. Ecography (cop) 30:550–560

    Article  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD, Dawson TP (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089–1103

    Article  Google Scholar 

  • Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob Ecol Biogeogr 23:1031–1045

    Article  Google Scholar 

  • Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2021a) Modelling species presence-only data with random forests. Ecography (cop) 44:1731–1742

    Article  Google Scholar 

  • Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2021b) Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol Monogr n/a:e1486

    Google Scholar 

  • Van Der Ploeg T, Austin PC, Steyerberg EW (2014) Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 14:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Walthert L, Meier ES (2017) Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol Evol 7:9473–9484

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Warton DI, Renner IW, Ramp D (2013) Model-based control of observer bias for the analysis of presence-only data in ecology. PLoS ONE 8:e79168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss A (2001) Topographic position and landforms analysis. In: Poster presentation, ESRI User Conference, San Diego, California

  • Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • Wright MN, Ziegler A (2017) Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw

    Article  Google Scholar 

  • Wunderlich RF, Lin YP, Anthony J, Petway JR (2019) Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nat Conserv 35:97–116

    Article  Google Scholar 

  • Yule GU (1912) On the methods of measuring association between two attributes. J R Stat Soc 75:579

    Article  Google Scholar 

  • Zell A, Mamier G, Vogt M, et al (1995) SNNS: stuttgart neural network simulator. User Manual, Version 4.2. http://www.ra.cs.uni-tuebingen.de/downloads/SNNS/SNNSv4.2.Manual.pdf

Download references

Acknowledgements

The council of agriculture of Taiwan supported this study (Project No: 109-AS-4.2.2-ST-a1 and 109-2621-M-002 -008 -MY3).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript (first draft)— RFW; Conceptualization—RFW, HM, & YPL; Data collection—RFW; Coding & Analysis—RFW; Visualization—RFW & HM; Manuscript (revision)—HM & YPL; Supervision—HM & YPL.

Corresponding author

Correspondence to Yu-Pin Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wunderlich, R.F., Mukhtar, H. & Lin, YP. Comprehensively evaluating the performance of species distribution models across clades and resolutions: choosing the right tool for the job. Landsc Ecol 37, 2045–2063 (2022). https://doi.org/10.1007/s10980-022-01465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01465-1

Keywords

Navigation