Skip to main content

Advertisement

Log in

Modelling inter-pixel spatial variation of surface urban heat island intensity

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Surface urban heat island intensity (SUHII) is a classical measure depicting urban heat island phenomenon via remotely sensed thermal infrared data. The most common approach is to compare urban and rural land surface temperatures (LST), which is not only sensitive to the selection of pixels/measurements representative of urban and rural areas, but also overlook the pixel-level intra-city SUHII variation and thermodynamics associated with heterogeneous urban landscape.

Objectives

This study develops a new \(\widehat{\mathrm{SUHIIen}}\), via pixel-based sharpening enhancement method to integrate a pixel’s LST magnitude that reflects a city’s overall thermal context with its local SUHII that takes the landscape variations and cognate thermal interactions with neighboring pixels into account.

Methods

Using Guangzhou (south China) as a case study, \(\widehat{\mathrm{SUHIIen}}\) is constructed applying Moderate Resolution Imaging Spectroradiometer LST product for the summer season of 2015 through cloud-based Google Earth Engine platform. The effectiveness of \(\widehat{\mathrm{SUHIIen}}\) is tested by comparing \(\widehat{\mathrm{SUHIIen}}\) results (based on 3 × 3, 5 × 5 and 7 × 7 kernels) with the original LST, a two-dimensional Gaussian surface, and Gaussian density curve with stepwise increments of the thermal influence from neighboring pixels on the center pixels.

Results

We found that (1) local SUHII variations are sensitive to the spatial composition of a center pixel’s land use type and that of its eight neighbors; (2) \(\widehat{\mathrm{SUHIIen}}\) makes more pronounced those spots that are not only heat per se (with higher original LST), but also receive additional heat load emitted from directly adjacent pixels due to land use homogeneity; (3) the effectiveness of \(\widehat{\mathrm{SUHIIen}}\) could be successfully verified.

Conclusions

This new SUHI indicator accounts for inter-pixel spatial variation of UHI and highlights how neighboring pixels’ homogeneous/heterogeneous land use and associated thermal properties could affect center pixels’ thermal characteristics via either reinforcement or mitigation of heat load. It contributes to rigorous assessment of potential heat risks at micro-pixel scale and tailored design of mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anniballe R, Bonafoni S (2015) A stable Gaussian fitting procedure for the parameterization of remote sensed thermal images. Algorithms 8(2):82–91

    Article  Google Scholar 

  • Basu M (2002) Gaussian-based edge-detection methods—a survey. IEEE Trans Syst Man Cybern C 32(3):252–260

    Article  Google Scholar 

  • Bian L, Butler R (1999) Comparing effects of aggregation methods on statistical and spatial properties of simulated spatial data. Photogramm Eng Remote Sens 65:73–84

    Google Scholar 

  • Bokaie M, Zarkesh MK, Arasteh PD, Hosseini A (2016) Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain Cities Soc 23:94–104

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc Ecol 25(1):17–33

    Article  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty T, Lee X (2019) A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int J Appl Earth Obs Geoinf 74:269–280

    Google Scholar 

  • Chao L, Huang B, Yuanjian Y, Jones P, Cheng J, Yang Y, Li Q (2020) A new evaluation of the role of urbanization to warming at various spatial scales: evidence from the Guangdong-Hong Kong-Macau region, China. Geophys Res Lett. https://doi.org/10.1029/2020GL089152

    Article  Google Scholar 

  • Chen X-L, Zhao H-M, Li P-X, Yin Z-Y (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146

    Article  Google Scholar 

  • Chen J, Yang S, Li H, Zhang B, Lv J (2013) Research on geographical environment unit division based on the method of natural breaks (Jenks). In: Proceedings of the ISPRS/IGU/ICA Joint Workshop on borderlands modelling and understanding for global sustainability, Beijing, China, pp 47–50

  • Deilami K, Kamruzzaman M, Liu Y (2018) Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int J Appl Earth Obs Geoinf 67:30–42

    Google Scholar 

  • Deng C, Wu C (2013) Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sens Environ 131:262–274

    Article  Google Scholar 

  • Dhal KG, Ray S, Das A, Das S (2019) A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Arch Comput Methods Eng 26(5):1607–1638

    Article  Google Scholar 

  • Di Sabatino S, Barbano F, Brattich E, Pulvirenti B (2020) The multiple-scale nature of urban heat island and its footprint on air quality in real urban environment. Atmosphere 11(11):1186

    Article  CAS  Google Scholar 

  • Duan S-B, Li Z-L (2016) Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: case study in northern China. IEEE Trans Geosci Remote Sens 54(11):6458–6469

    Article  Google Scholar 

  • Feng X, Foody G, Aplin P, Gosling SN (2015) Enhancing the spatial resolution of satellite-derived land surface temperature mapping for urban areas. Sustain Cities Soc 19:341–348

    Article  Google Scholar 

  • Fu S, Ruan Q, Wang W (2008) Remote sensing image data enhancement based on robust inverse diffusion equation for agriculture applications. In: Processing of the 9th international conference on signal procssing, Beijing, China, pp 1231–1234

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Han L, Liu Z, Ning Y, Zhao Z (2018) Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv Space Res 62(9):2480–2493

    Article  Google Scholar 

  • Haralick RM (1987) Digital step edges from zero crossing of second directional derivatives. IEEE Trans Pattern Anal Mach Intell 6(1):58–68

    Article  Google Scholar 

  • Heaviside C, Macintyre H, Vardoulakis S (2017) The urban heat island: implications for health in a changing environment. Curr Environ Health Rep 4(3):296–305

    Article  PubMed  Google Scholar 

  • Hulley G, Shivers S, Wetherley E, Cudd R (2019) New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: a case study for Los Angeles County, California. Remote Sens 11(18):2136

    Article  Google Scholar 

  • Jeevakala S (2018) Sharpening enhancement technique for MR images to enhance the segmentation. Biomed Signal Process Control 41:21–30

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Buyantuev A, Stefanov WL, Declet-Barreto J, Ruddell BL, Myint SW, Kaplan S, Li X (2016) Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ, USA. Landsc Ecol 31(4):745–760

    Article  Google Scholar 

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann Assoc Am Geogr 61(2):217–244

    Article  Google Scholar 

  • Keramitsoglou I, Kiranoudis CT, Ceriola G, Weng Q, Rajasekar U (2011) Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens Environ 115(12):3080–3090

    Article  Google Scholar 

  • Kim J-P, Guldmann J-M (2014) Land-use planning and the urban heat island. Environ Plan B 41(6):1077–1099

    Article  Google Scholar 

  • Kwarteng P, Chavez A (1989) Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm Eng Remote Sens 55(1):339–348

    Google Scholar 

  • Lai J, Zhan W, Voogt J, Quan J, Huang F, Zhou J, Bechtel B, Hu L, Wang K, Cao C, Lee X (2021) Meteorological controls on daily variations of nighttime surface urban heat islands. Remote Sens Environ 253:112198

    Article  Google Scholar 

  • Li Q, Dong W (2009) Detection and adjustment of undocumented discontinuities in Chinese temperature series using a composite approach. Adv Atmos Sci 26(1):143–153

    Article  CAS  Google Scholar 

  • Li N, Li X (2020) The impact of building thermal anisotropy on surface urban heat island intensity estimation: an observational case study in Beijing. IEEE Geosci Remote Sens Lett 17(12):2030–2034

    Article  Google Scholar 

  • Li G, Wang Q (2013) Research on reefs extraction method based on multi-spectral remote sensing. In: Proceedings of the 6th international conference on business intelligence and financial engineering, Hangzhou, China, pp 14–17

  • Li Y-y, Zhang H, Kainz W (2012) Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: using time-series of Landsat TM/ETM+ data. Int J Appl Earth Obs Geoinf 19:127–138

    Google Scholar 

  • Li W, Cao Q, Lang K, Wu J (2017) Linking potential heat source and sink to urban heat island: heterogeneous effects of landscape pattern on land surface temperature. Sci Total Environ 586:457–465

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang F, Fu Y, Guo B, Zhao Y, Yu H (2020a) A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data. IEEE J Sel Top Appl Earth Obs Remote Sens 13:1416–1425

    Article  Google Scholar 

  • Li L, Zha Y, Zhang J (2020b) Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. Int J Appl Earth Obs Geoinf 90:102131

    Google Scholar 

  • Ma J, Yu W, Chen C, Liang P, Guo X, Jiang J (2020) Pan-GAN: an unsupervised pan-sharpening method for remote sensing image fusion. Inf Fusion 62:110–120

    Article  Google Scholar 

  • Mahmoud SH, Alazba AA (2016) Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ Earth Sci 75(4):344

    Article  CAS  Google Scholar 

  • Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond Ser B Biol Sci 207(1167):187–217

    CAS  Google Scholar 

  • Nöllenburg M (2007) Geographic visualization. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. Springer, Berlin, pp 257–294

    Chapter  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon F-M, Nan H, Zhou L, Mynen RB (2012) Surface urban heat island across 419 global big cities. Environ Sci Technol 46(2):696–703

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Hu Y, Dong J, Liu Q, Liu Y (2020) Quantifying spatial morphology and connectivity of urban heat islands in a megacity: a radius approach. Sci Total Environ 714:136792

    Article  CAS  PubMed  Google Scholar 

  • Pereira Filho AJ, Karam HA (2016) Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data. Urban Climate 17:32–66

    Article  Google Scholar 

  • Prewitt JMS (1970) Object enhancement and extraction. Pict Process Psychopict 10(1):15–19

    Google Scholar 

  • Rajasekar U, Weng Q (2009) Urban heat island monitoring and analysis using a non-parametric model: a case study of Indianapolis. ISPRS J Photogramm Remote Sens 64(1):86–96

    Article  Google Scholar 

  • Rasul A, Balzter H, Smith C, Remedios J, Adamu B, Sobrino JA, Srivanit M, Weng Q (2017) A review on remote sensing of urban heat and cool islands. Land 6(2):38

    Article  Google Scholar 

  • Ratcliffe CP (1997) Damage detection using a modified Laplacian operator on mode shape data. J Sound Vib 204(3):505–517

    Article  Google Scholar 

  • Roberts LG (1963) Machine perception of three-dimensional solids. Doctoral Dissertation, Massachusetts Institute of Technology

  • Schwarz N, Lautenbach S, Seppelt R (2011) Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ 115(12):3175–3186

    Article  Google Scholar 

  • Sekertekin A, Zadbagher E (2021) Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecol Ind 122:107230

    Article  Google Scholar 

  • Sobel I, Feldman G (1968) A 3 × 3 isotropic gradient operator for image processing. A talk at the Stanford Artificial Project

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900

    Article  Google Scholar 

  • Streutker DR (2002) A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sens 23(13):2595–2608

    Article  Google Scholar 

  • Streutker DR (2003) Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens Environ 85(3):282–289

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Torre V, Poggio TA (1986) On edge detection. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.1986.4767769

    Article  PubMed  Google Scholar 

  • Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8(1):34–48

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

  • Waleed M, Um T-W, Khan A, Ahmad Z (2020) An automated method for detection and enumeration of olive trees through remote sensing. IEEE Access 8:108592–108601

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Remote Sens 25(1):261–274

    Article  Google Scholar 

  • Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens Environ 112(3):623–635

    Article  Google Scholar 

  • Wang R, Cai M, Ren C, Bechtel B, Xu Y, Ng E (2019) Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Climate 28:100455

    Article  Google Scholar 

  • Weng Q (2009) Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J Photogramm Remote Sens 64(4):335–344

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483

    Article  Google Scholar 

  • Weng Q, Rajasekar U, Hu X (2011) Modeling urban heat islands and their relationship with impervious surface and vegetation abundance by using ASTER images. IEEE Trans Geosci Remote Sens 49(10):4080–4089

    Article  Google Scholar 

  • Wu P, Yin Z, Zeng C, Duan S-B, Göttsche F-M, Ma X, Li X, Yang H, Shen H (2021) Spatially continuous and high-resolution land surface temperature product generation: a review of reconstruction and spatiotemporal fusion techniques. IEEE Geosci Remote Sens Mag 9:112–137

    Article  Google Scholar 

  • Xiao R, Weng Q, Ouyang Z, Li W, Schienke EW, Zhang Z (2008) Land surface temperature variation and major factors in Beijing, China. Photogramm Eng Remote Sens 74(4):451–461

    Article  Google Scholar 

  • Yang Z, Witharana C, Hurd J, Wang K, Hao R, Tong S (2020) Using Landsat 8 data to compare percent impervious surface area and normalized difference vegetation index as indicators of urban heat island effects in Connecticut, USA. Environ Earth Sci 79(18):1–13

    Article  Google Scholar 

  • Yin C, Yuan M, Lu Y, Huang Y, Liu Y (2018) Effects of urban form on the urban heat island effect based on spatial regression model. Sci Total Environ 634:696–704

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Fu X, Jiang H, Wang C, Li X, Zhao M, Ying X, Chen H (2018) Remote sensing image segmentation by combining feature enhanced with fully convolutional network. In: Cheng L, Leung A, Ozawa S (eds) Neural information processing. Springer, Cham, pp 406–415

    Chapter  Google Scholar 

  • Yu Z, Jing Y, Yang G, Sun R (2021a) A new urban functional zone-based climate zoning system for urban temperature study. Remote Sens 13:251

    Article  Google Scholar 

  • Yu Z, Fryd O, Sun R, Jørgensen G, Yang G, Özdil NC, Vejre H (2021b) Where and how to cool? An idealized urban thermal security pattern model. Landsc Ecol 36(7):2165–2174

    Article  Google Scholar 

  • Zhan W, Chen Y, Zhou J, Wang J, Liu W, Voogt J, Zhu X, Quan J, Li J (2013) Disaggregation of remotely sensed land surface temperature: literature survey, taxonomy, issues, and caveats. Remote Sens Environ 131:119–139

    Article  Google Scholar 

  • Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511(7508):216–219

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Jensen J, Weng Q, Weaver R (2018) A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon. Remote Sens 10(9):1428

    Article  Google Scholar 

  • Zhou X, Chen H (2018) Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci Total Environ 635:1467–1476

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y, Frolking S, Yao R, Qiao Z, Sobrino JA (2019) Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sens 11(1):48

    Article  Google Scholar 

  • Zhou B, Kaplan S, Peeters A, Kloog I, Erell E (2020) “Surface”, “satellite” or “simulation”: mapping intra-urban microclimate variability in a desert city. Int J Climatol 40(6):3099–3117

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank three anonymous reviewers as well as the editor for their helpful comments and suggestions.

Funding

This work was supported by HKU Foundation Postgraduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by YC. The first draft of the manuscript was written by WYC and YC. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wendy Y. Chen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, W.Y., Giannico, V. et al. Modelling inter-pixel spatial variation of surface urban heat island intensity. Landsc Ecol 37, 2179–2194 (2022). https://doi.org/10.1007/s10980-022-01464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01464-2

Keywords

Navigation