Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33(1):121–131
Article
Google Scholar
Bales RC, Goulden ML, Hunsaker CT, Conklin MH, Hartsough PC, O’Geen AT, Safeeq M (2018) Mechanisms controlling the impact of multi-year drought on mountain hydrology. Sci Rep. https://doi.org/10.1038/s41598-017-19007-0
Article
PubMed
PubMed Central
Google Scholar
Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Null 24(1):43–69
Google Scholar
Caldwell PV, Miniat CF, Elliott KJ, Swank WT, Brantley ST, Laseter SH (2016) Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob Change Biol 22(9):2997–3012
Article
Google Scholar
Christopher Oishi A (2020), AmeriFlux BASE US-Cwt Coweeta, Ver. 1–5, AmeriFlux AMP https://doi.org/10.17190/AMF/1671890
Elliott KJ, Swank WT (2008) Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata). Plant Ecol 197(2):155–172
Article
Google Scholar
Elliott KJ, Miniat CF, Pederson N, Laseter SH (2015) Forest tree growth response to hydroclimate variability in the southern Appalachians. Glob Change Biol 21(12):4627–4641
Article
Google Scholar
Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plan Manag 132(3):129–132
Article
Google Scholar
Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, Brantley SL, Yamazaki D (2019) Hillslope hydrology in global change research and earth system modeling. Water Resour Res 55(2):1737–1772
Article
Google Scholar
Fisher JB, Melton F, Middleton E, Hain C, Anderson M, Allen R, Wood EF (2017) The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour Res 53(4):2618–2626
Article
Google Scholar
Fisher JB, Lee B, Purdy AJ, Halverson GH, Dohlen MB, Cawse-Nicholson K, Hook S (2020) ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station. Water Resour Res 56(4):e2019WR026058
Article
Google Scholar
Ford CR, Hubbard RM, Vose JM (2011) Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern appalachians. Ecohydrology 4(2):183–195
Article
Google Scholar
Friedl M, Sulla-Menashe D (2019). MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 Global 500m SIN Grid V006 . NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 27 Oct 2021
Gesch DB, Evans GA, Oimoen MJ, and Arundel S (2018). The national elevation dataset. (pp. 83–110) American Society for Photogrammetry and Remote Sensing. http://pubs.er.usgs.gov/publication/70201572. Accessed 1 Aug 2021
Goulden ML, Bales RC (2014) Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc Natl Acad Sci 111(39):14071–14075
CAS
PubMed
PubMed Central
Article
Google Scholar
Goulden ML, Bales RC (2019) California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat Geosci 12(8):632–637
CAS
Article
Google Scholar
Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm1. JAWRA J Am Water Resour Assoc 35(2):311–322
Article
Google Scholar
Hawthorne S, Miniat CF (2018) Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology 11(1):e1825
Article
Google Scholar
Hoylman ZH, Jencso KG, Hu J, Martin JT, Holden ZA, Seielstad CA, Rowell EM (2018) Hillslope topography mediates spatial patterns of ecosystem sensitivity to climate. J Geophys Res Biogeosci 123(2):353–371
Article
Google Scholar
Hwang T, Band LE, Vose JM, Tague C (2012) Ecosystem processes at the watershed scale: hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments. Water Resour Res. https://doi.org/10.1029/2011WR011301
Article
Google Scholar
Hwang T, Band LE, Miniat CF, Song C, Bolstad PV, Vose JM, Love JP (2014) Divergent phenological response to hydroclimate variability in forested mountain watersheds. Glob Change Biol 20(8):2580–2595
Article
Google Scholar
Hwang T, Martin KL, Vose JM, Wear D, Miles B, Kim Y, Band LE (2018) Nonstationary hydrologic behavior in forested watersheds is mediated by climate-induced changes in growing season length and subsequent vegetation growth. Water Resour Res 54(8):5359–5375.
Article
Google Scholar
Hwang T, Band LE, Miniat CF, Vose JM, Knoepp JD, Song C, Bolstad PV (2020) Climate change may increase the drought stress of mesophytic trees downslope with ongoing forest mesophication under a history of fire suppression. Front For Glob Change. https://doi.org/10.3389/ffgc.2020.00017
Article
Google Scholar
Jiao W, Wang L, Smith WK, Chang Q, Wang H, D’Odorico P (2021) Observed increasing water constraint on vegetation growth over the last three decades. Nat Commun 12(1):1–9
Article
CAS
Google Scholar
Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499(7458):324–327
CAS
PubMed
Article
Google Scholar
Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105(33):11823
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin L, Band LE, Vose JM, Hwang T, Miniat CF, Bolstad PV (2019) Ecosystem processes at the watershed scale: influence of flowpath patterns of canopy ecophysiology on emergent catchment water and carbon cycling. Ecohydrology 12(5):e2093
Article
Google Scholar
Mastrotheodoros T, Pappas C, Molnar P, Burlando P, Manoli G, Parajka J, Fatichi S (2020) More green and less blue water in the alps during warmer summers. Nat Clim Chang 10(2):155–161
Article
Google Scholar
Meinzer FC, Woodruff DR, Eissenstat DM, Lin HS, Adams TS, McCulloh KA (2013) Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Tree Physiol 33(4):345–356
PubMed
Article
Google Scholar
Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234
CAS
PubMed
Google Scholar
Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536
Article
Google Scholar
Nicolai-Shaw N, Zscheischler J, Hirschi M, Gudmundsson L, Seneviratne SI (2017) A drought event composite analysis using satellite remote-sensing based soil moisture. Remote Sens Environ 203:216–225
Article
Google Scholar
Novick K, Brantley S, Miniat CF, Walker J, Vose JM (2014) Inferring the contribution of advection to total ecosystem scalar fluxes over a tall forest in complex terrain. Agric for Meteorol 185:1–13
Article
Google Scholar
Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G et al. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes—ProQuest. Nature Climate Change1 6(11). https://search-proquest-com.prox.lib.ncsu.edu/docview/1833258797?pq-origsite=summon. Accessed 1 Aug 2021
Nowacki GJ, Abrams MD (2008) The demise of fire and “Mesophication” of forests in the eastern United States. Bioscience 58(2):123–138
Article
Google Scholar
Oishi AC, Miniat CF, Novick KA, Brantley ST, Vose JM, Walker JT (2018) Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric For Meteorol 252:269–282
Article
Google Scholar
Orth R, Destouni G (2018) Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat Commun 9(1):1–8
CAS
Article
Google Scholar
Pascolini-Campbell M, Reager JT, Chandanpurkar HA, Rodell M (2021) A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593(7860):543–547
CAS
PubMed
Article
Google Scholar
Pederson N, D’Amato AW, Dyer JM, Foster DR, Goldblum D, Hart JL, Williams JW (2015) Climate remains an important driver of post-European vegetation change in the eastern United States. Glob Change Biol 21(6):2105–2110
Article
Google Scholar
Pittillo, J. D., Hatcher, R. D., & Buol, S. W. (1998). Introduction to the environment and vegetation of the southern blue ridge province. Castanea 63(3): 202–216. http://www.jstor.org/stable/4033976. Accessed 1 Aug 2021
Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change 114(3):527–547
Article
Google Scholar
Riley KL, Grenfell IC, Finney MA, Wiener JM (2021) TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data. Sci Data 8(1):1–14
CAS
Article
Google Scholar
Running, S., Mu, Q., Zhao, M., Moreno, A. (2019). MOD16A2GF MODIS/Terra net evapotranspiration gap-filled 8-day L4 global 500 m SIN Grid V006 . NASA EOSDIS Land Processes DAAC. Accessed 7 Aug 2021 https://doi.org/10.5067/MODIS/MOD16A2GF.006
Sayler, K., Zanter, K. (2020). Landsat provisional actual evapotranspiration (ETa) product guide. U.S. Geological Survey. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1990_Landsat-Provisional-Actual-Evapotranspiration-Product-Guide-v1.pdf. Accessed 1 Aug 2021
Senay GB (2018) Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration. Appl Eng Agric 34:555–2018
Article
Google Scholar
Senay GB, Budde M, Verdin JP, Melesse AM (2007) A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors. https://doi.org/10.3390/s7060979
Article
PubMed
PubMed Central
Google Scholar
Senay GB, Budde ME, Verdin JP (2011) Enhancing the simplified surface energy balance (SSEB) approach for estimating landscape ET: validation with the METRIC model. Agric Water Manag 98(4):606–618
Article
Google Scholar
Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, Verdin JP (2013) Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. JAWRA J Am Water Resour Assoc 49(3):577–591
Article
Google Scholar
Senay GB, Schauer M, Friedrichs M, Velpuri NM, Singh RK (2017) Satellite-based water use dynamics using historical landsat data (1984–2014) in the southwestern United States. Remote Sens Environ 202:98–112
Article
Google Scholar
Tai X, Anderegg WRL, Blanken PD, Burns SP, Christensen L, Brooks PD (2020) Hillslope hydrology influences the spatial and temporal patterns of remotely sensed ecosystem productivity. Water Resour Res 56(11):e2020WR027630
Article
Google Scholar
Tai X, Venturas MD, Mackay DS, Brooks PD, Flanagan LB (2021) Lateral subsurface flow modulates forest mortality risk to future climate and elevated CO2. Environ Res Lett 16(8):084015
CAS
Article
Google Scholar
Teuling AJ, Loon AFV, Seneviratne SI, Lehner I, Aubinet M, Heinesch B et al (2013) Evapotranspiration amplifies European summer drought. Geophys Res Lett 40(10):2071–2075
Article
Google Scholar
Tromp-van Meerveld HJ, McDonnell JJ (2006) On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Adv Water Resour 29(2):293–310
Article
Google Scholar
Wang H, Rogers JC, Munroe DK (2015) Commonly used drought indices as indicators of soil moisture in China. J Hydrometeorol 16(3):1397–1408
Article
Google Scholar
Wilson BT, Lister AJ, Riemann RI, Griffith DM (2013) Live tree species basal area of the contiguous United States (2000–2009). USDA Forest Service, Rocky Mountain Research Station, Newtown Square. https://doi.org/10.2737/RDS-2013-0013
Book
Google Scholar
Yang Y, Anderson MC, Gao F, Hain CR, and Semmens KA (2015). Daily landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrology and Earth System Sciences 21(2): 1017–1037. https://search-proquest-com.prox.lib.ncsu.edu/docview/1868927281?pq-origsite=summon
Yang L, Jin S, Danielson P, Homer C, Gass L, Bender SM, Xian G (2018) A new generation of the united states national land cover database: requirements, research priorities, design, and implementation strategies. ISPRS J Photogramm Remote Sens 146:108–123
Article
Google Scholar