Skip to main content

A multi-scale landscape approach to understand dispersal of the mistletoe by birds in Mediterranean pine forests

Abstract

Context

Seed dispersal by birds plays a crucial role in structuring landscape dynamics. The dispersal process has been extensively studied at local scales; however, landscape scale approaches are scarce. The wide availability of bird species distribution data can be used to explore plant dispersal processes at large spatial scales.

Objective

We investigated whether and at which scale bird-seed-dispersal indicators (BSDI) based on species distribution models (SDMs), together with climatic and landscape structure metrics related to habitat preferences of birds, aid the explanation of the distribution of Viscum album.

Methods

We developed a set of BSDI (abundance, species richness, Turdus spp. richness, and specialization) at four different scales (500–3500 m). They served as predictors, along with other environmental variables, in generalized linear models to predict V. album distribution in Catalonia, Spain.

Results

The indicator Turdus spp. richness (3500 m) explained up to 15% of variance. This contribution was smaller when it was considered alongside other predictors, where climatic conditions and % of olive groves explained ca. 35% and 13% variance, respectively. The abundance or species richness BSDI proved to be poor predictors of V. album distribution.

Conclusions

We demonstrated the functionality of BSDI based on SDMs to predict the distribution of V. album and the importance to test them at different spatial scales. BSDI showed a clear larger effect with increasing scale, suggesting a strong link between the mobility of birds and the plant dispersal process. The modelling approach could be applied to different localities and species to understand plant seed dispersal at landscape scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The datasets analyzed during the current study and codes used to do so are available from the corresponding author on reasonable request.

References

  1. Assandri G, Bogliani G, Pedrini P, Brambilla M (2018) Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation. Agric Ecosyst Environ 256:200–210

    Google Scholar 

  2. Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38(1):567–593

    Google Scholar 

  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Google Scholar 

  4. Beilin R, Lindborg R, Stenseke M, Pereira HM, Llausàs A, Slätmo E, Cerqueira Y, Navarro L, Rodrigues P, Reichelt N, Munro N, Queiroz C (2014) Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 36:60–72

    Google Scholar 

  5. Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15(6):584–593

    PubMed  PubMed Central  Google Scholar 

  6. Burnham KP, Anderson DR (2004) Model selection and multimodel inference. Springer, New York

    Google Scholar 

  7. Bustos Navarrete C, Coutinho Soares F (2020) R-package: dominanceanalysis. Available athttps://cran.r-project.org/web/packages/dominanceanalysis/index.html

  8. Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM, Gibson D (2015) To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103(1):44–57

    CAS  Google Scholar 

  9. Carlo TA, García D, Martínez D, Gleditsch JM, Morales JM (2013) Where do seeds go when they go far? Distance and directionality of avian seed dispersal in heterogeneous landscapes. Ecology 94(2):301–307

    PubMed  Google Scholar 

  10. Cervera T, Pino J, Marull J, Padró R, Tello E (2019) Understanding the long-term dynamics of forest transition: from deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 80:318–331

    Google Scholar 

  11. Clark CJ, Poulsen JR, Bolker BM, Connor EF, Parker VT (2005) Comparative seed shadows of bird-monkey-, and wind-dispersed trees. Ecology 86:2684–2694

    Google Scholar 

  12. Dagan U, Izhaki I (2019) Understory vegetation in planted pine forests governs bird community composition and diversity in the eastern Mediterranean region. For Ecosyst 6(1):281

    Google Scholar 

  13. de Castro M, Martín-Vide J, Alonso S (2005) Evaluación preliminar de los impactos en España por efecto del cambio clima´tico. Editorial Ministerio de Medio Ambiente:1–64

  14. DGCN (2007) III Inventario forestal nacional 1997–2007. DGCN, Madrid

    Google Scholar 

  15. Díaz L (2006) Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. For Ecol Manag 223(1–3):54–65

    Google Scholar 

  16. Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemuth T, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland--the result of climate warming? Int J Biometeorol 50(1):40–47

    PubMed  Google Scholar 

  17. Donoso I, García D, Martínez D, Tylianakis JM, Stouffer DB (2017) Complementary effects of species abundances and ecological neighborhood on the occurrence of fruit–frugivore interactions. Front Ecol Evol 5:526

    Google Scholar 

  18. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Google Scholar 

  19. DUN (2015) Mapa dels cultius de Catalunya: Generalitat de Catalunya Departament d’Agricultura, Ramaderia, Pesca i Alimentació,Direcció General de Desenvolupament Rural

  20. Dunning JB (eds) (2007) CRC handbook of avian body masses. CRC Press, Boca Raton

    Google Scholar 

  21. Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32(1):34–45

    Google Scholar 

  22. Engler JO, Stiels D, Schidelko K, Strubbe D, Quillfeldt P, Brambilla M (2017) Avian SDMs: current state, challenges, and opportunities. J Avian Biol 48(12):1483–1504

    Google Scholar 

  23. Fern RR, Morrison ML, Wang H-H, Grant WE, Campbell TA (2019) Incorporating biotic relationships improves species distribution models: modeling the temporal influence of competition in conspecific nesting birds. Ecol Model 408:108743

    Google Scholar 

  24. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4(1):e1

    PubMed  Google Scholar 

  25. García D, Martínez D (2012) Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proc R Soc B Biol Sci 279(1740):3106–3113

    Google Scholar 

  26. García D, Ortiz-Pulido R (2004) Patterns of resource tracking by avian frugivores at multiple spatial scales: Two case studies on discordance among scales. Ecography 27(2):187–196

    Google Scholar 

  27. García D, Zamora R, Amico GC (2010) Birds as suppliers of seed dispersal in temperate ecosystems: conservation guidelines from real-world landscapes. Conserv Biol J Soc Conserv Biol 24(4):1070–1079

    Google Scholar 

  28. García D, Zamora R, Amico GC (2011) The spatial scale of plant–animal interactions: effects of resource availability and habitat structure. Ecol Monogr 81(1):103–121

    Google Scholar 

  29. García D, Martínez D, Herrera JM, Morales JM (2013) Functional heterogeneity in a plant-frugivore assemblage enhances seed dispersal resilience to habitat loss. Ecography 36(2):197–208

    Google Scholar 

  30. García D, Donoso I, Rodríguez-Pérez J, Heleno R (2018) Frugivore biodiversity and complementarity in interaction networks enhance landscape‐scale seed dispersal function. Funct Ecol 32(12):2742–2752

    Google Scholar 

  31. Gil-Tena A, Saura S, Brotons L (2007) Effects of forest composition and structure on bird species richness in a Mediterranean context: Implications for forest ecosystem management. For Ecol Manage 242(2–3):470–476

    Google Scholar 

  32. González-Varo JP, Carvalho CS, Arroyo JM, Jordano P (2017) Unravelling seed dispersal through fragmented landscapes: Frugivore species operate unevenly as mobile links. Mol Ecol 26(16):4309–4321

    PubMed  Google Scholar 

  33. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186

    Google Scholar 

  34. Herrando S, Brotons L, Estrada J, Guallar S, Anton M (2011) Catalan Winter Bird Atlas 2006-2009. ICO, Institut Català d’Ornitologia

  35. Herrera JM, Morales JM, Garcı´a D (2011) Differential effects of fruit availability and habitat cover for frugivore-mediated seed dispersal in a heterogeneous landscape. J Ecol 99:1100–1107

    Google Scholar 

  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15):1965–1978

    Google Scholar 

  37. Ibàñez JJ, Burriel JA (2010) Mapa de cubiertas del suelo de Cataluña: características de la tercera edición y relación con SIOSE. In: In: Ojeda J, Pita MF, Vallejo I (eds) Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos. Secretariado de Publicaciones de la Universidad de Sevilla(Sevilla

  38. ICGC (2016) Variables biofísiques de Catalunya. Generalitat de Catalunya.Institut Cartogràfic i Geològic de Catalunya

  39. Infante-Amate J (2016) The making of olive landscapes in the South of Spain. A history of continuous expansion and intensification. In: Agnoletti M, Emanueli F (eds) Biocultural diversity in Europe. Environmental history, 5th edn. Springer, Cham

    Google Scholar 

  40. Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27(7):929–941

    Google Scholar 

  41. Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24(1):52–63

    Google Scholar 

  42. James G, Witten D, Hastie T, Tibshirani R (2017) An introduction to statistical learning: with applications in R. Springer texts in statistics. Springer, New York

    Google Scholar 

  43. Jordano P, Schupp EW (2000) Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecol Monogr 70(4):591

    Google Scholar 

  44. Kark S, Allnutt TF, Levin N, Manne LL, Williams PH (2007) The role of transitional areas as avian biodiversity centres. Glob Ecol Biogeogr 16(2):187–196

    Google Scholar 

  45. Kass JM, Anderson RP, Espinosa-Lucas A, Juárez‐Jaimes V, Martínez‐Salas E, Botello F, Tavera G, Flores‐Martínez JJ, Sánchez‐Cordero V (2019) Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. Ecography 43(3):341–352

    Google Scholar 

  46. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol Lett 10(4):299–314

    PubMed  Google Scholar 

  47. Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Effects of landscape corridors on seed dispersal by birds. Science 309:146–148

    CAS  PubMed  Google Scholar 

  48. Martin AE (2018) The spatial scale of a species’ response to the landscape context depends on which biological response you measure. Curr Landsc Ecol Rep 3(1):23–33

    Google Scholar 

  49. Martínez I, García D, Obeso JR (2008) Differential seed dispersal patterns generated by a common assemblage of vertebrate frugivores in three fleshy-fruited trees. Écoscience 15(2):189–199

    Google Scholar 

  50. Martínez-López V, Zapata V, La Rúa P, Robledano F (2019) Uncovering mechanisms of bird seed dispersal in semiarid environments to help to restore them. Ecosphere 10(4):e02673

    Google Scholar 

  51. Mellado A, Zamora R (2014) Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia 176(1):139–147

    PubMed  Google Scholar 

  52. Mellado A, Zamora R, Watling J (2016) Spatial heterogeneity of a parasitic plant drives the seed-dispersal pattern of a zoochorous plant community in a generalist dispersal system. Funct Ecol 30(3):459–467

    Google Scholar 

  53. Mellado A, Zamora R, Barton K (2017) Parasites structuring ecological communities: the mistletoe footprint in Mediterranean pine forests. Funct Ecol 31(11):2167–2176

    Google Scholar 

  54. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31(6):1177–1194

    Google Scholar 

  55. Morales JM, García D, Martínez D, Rodriguez-Pérez J, Herrera JM (2013) Frugivore behavioural details matter for seed dispersal: A multi-species model for cantabrian thrushes and trees. PLoS ONE 8(6):e65216

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    CAS  PubMed  Google Scholar 

  57. Palacio FX, Girini JM (2018) Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight-billed reedhaunter Limnoctites rectirostris. J Avian Biol 49(11):e01743

    Google Scholar 

  58. Rey PJ (1995) Spatio-Temporal Variation in Fruit and Frugivorous Bird Abundance in Olive Orchards. Ecology 76(5):1625–1635

    Google Scholar 

  59. Rey PJ (2011) Preserving frugivorous birds in agro-ecosystems: Lessons from Spanish olive orchards. J Appl Ecol 48(1):228–237

    Google Scholar 

  60. Rey PJ, Manzaneda AJ, Valera F, Alcántara JM, Tarifa R, Isla J, Molina-Pardo JL, Calvo G, Salido T, Gutiérrez JE, Ruiz C (2019) Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agr Ecosyst Environ 277:61–73

    Google Scholar 

  61. Rodríguez-Pérez J, García D, Martínez D, Morales JM (2017) Seed dispersal by changing frugivore assemblages: A mechanistic test of global change effects. Oikos 126(5):671–681

    Google Scholar 

  62. Rother DC, Pizo MA, Jordano P (2016) Variation in seed dispersal effectiveness: the redundancy of consequences in diversified tropical frugivore assemblages. Oikos 125(3):336–342

    Google Scholar 

  63. Roura-Pascual R, Brotons L, Garcia D, Zamora R, de Caceres M (2012) Local and landscape-scale biotic correlates of mistletoe distribution in Mediterraean pine forests. Forest Systems 21(2):179–188

    Google Scholar 

  64. Santana J, Porto M, Reino L, Moreira F, Ribeiro PF, Santos JL, Rotenberry JT, Beja P, Lee TM (2017) Using beta diversity to inform agricultural policies and conservation actions on Mediterranean farmland. J Appl Ecol 54(6):1825–1835

    Google Scholar 

  65. Schupp EW, Milleron T, Russo R (2002) Dispersal limitation and the origin and maintenance of species rich tropical forests. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution, and conservation. CAB International Press, Cambridge

    Google Scholar 

  66. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A, Fink D, Fitzpatrick JW, Fredericks T, Gerbracht J, Gomes C, Hochachka WM, Iliff MJ, Lagoze C, La Sorte FA, Merrifield M, Morris W, Phillips TB, Reynolds M, Rodewald AD, Rosenberg KV, Trautmann NM, Wiggins A, Winkler DW, Wong W-K, Wood CL, Yu J, Kelling S (2014) The eBird enterprise: An integrated approach to development and application of citizen science. Biol Conserv 169:31–40

    Google Scholar 

  67. Turcek FJ, Publish J, Fennel D (2019) Ökologische Beziehungen der Vögel und Gehölze: Reprint 2019 by Exlibris Publish. Books on Demand

  68. Uriarte M, Anciães M, da Silva MTB, Rubim P, Johnson E, Bruna EM (2011) Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92(4):924–937

    PubMed  Google Scholar 

  69. Zamora R, Mellado A (2019) Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biol 21(2):307–317

    CAS  PubMed  Google Scholar 

  70. Zuber D (2004) Biological flora of Central Europe: Viscum album L. Flora - Morphology, Distribution. Functional Ecology of Plants 199(3):181–203

    Google Scholar 

  71. Elith J, Leathwick JR (2009) Species distribution models, ecological explanation and prediction across space and time. Annu Rev Ecol Syst 40:677–697

    Google Scholar 

  72. Battin J, Lawler JJ (2006) Cross-scale correlations and the design and analysis of avian habitat selection studies. Condor 108(1):59–70

    Google Scholar 

Download references

Acknowledgements

The work was supported by the INMODES (CGL2017-89999-C2-2-R) project funded by the Spanish Ministry of Science and Innovation. J.R. was supported by the Erasmus Mundus Joint Master Degree (EMJMD) scholarship. A.M.O. was supported by the Spanish Government through the Juan de la Cierva fellowship program (IJCI-2016-30349).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JR, AMO and LB. The first draft of the manuscript was written by JR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Julia Ramsauer.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3686 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramsauer, J., Brotons, L., Herrando, S. et al. A multi-scale landscape approach to understand dispersal of the mistletoe by birds in Mediterranean pine forests. Landscape Ecol (2021). https://doi.org/10.1007/s10980-021-01369-6

Download citation

Keywords

  • Spatial scale
  • Landscape extent
  • Biodiversity indicators
  • Frugivorous birds
  • Iberian Peninsula
  • Ecosystem services