Ames EM, Gade MR, Nieman CL et al (2020) Striving for population-level conservation: integrating physiology across the biological hierarchy. Conservation Physiology 8:1–17
Google Scholar
Arthur SM, Manly BFJ, McDonald LL, Garner GW (1996) Assessing habitat selection when availability changes. Ecology 77(1):215–227
Google Scholar
Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23(3):355–365
Google Scholar
Astheimer LB, Buttemer WA, Wingfield JC (2000) Corticosterone treatment has no effect on reproductive hormones or aggressive behavior in free-living male tree sparrows, Spizella arborea. Hormones and Behavior 37(1):31–39
CAS
PubMed
Google Scholar
Baltic M, Jenni-Eiermann S, Arlettaz R, Palme R (2005) A noninvasive technique to evaluate human-generated stress in the Black Grouse. Ann N Y Acad Sci 1046:81–95
CAS
PubMed
Google Scholar
Bateman BL, Pidgeon AM, Radeloff VC et al (2016) Potential breeding distributions of US birds predicted with both short-term variability and long-term average climate data. Ecol Appl 26(8):2718–2729
PubMed
Google Scholar
Bateman BL, VanDerWal J, Johnson CN (2012) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35(4):306–314
Google Scholar
Blanchette P, Bourgeois JC, St-Onge S (2007) Winter selection of roost sites by ruffed grouse during daytime in mixed nordic-temperate forests, Quebec, Canada. Can J Zool 85(4):497–504
Google Scholar
Bump GR, Darrow RW, Edminster FC, Crissey WF (1947) The Ruffed Grouse: Life History, Propagation, and Management. New York State Conservation Department Buffalo NY
Busch DS, Sperry TS, Peterson E, Do CT, Wingfield JC, Boyd EH (2008) Impacts of frequent, acute pulses of corticosterone on condition and behavior of Gambel’s white-crowned sparrow (Zonotrichia leucophtys gambelii). Gen Comp Endocrinol 158(3):224–233
CAS
PubMed
Google Scholar
Campomizzi AJ, Butcher JA, Farrell SL et al (2008) Conspecific attraction is a missing component in wildlife habitat modeling. J Wildl Manag 72(1):331–336
Google Scholar
Carere C, Groothuis TGG, Mostl E, Daan S, Koolhaas JM (2003) Fecal corticosteroids in a territorial bird selected for different personalities: daily rhythm and the response to social stress. Horm Behav 43:540–548
CAS
PubMed
Google Scholar
Cooke SJ, O’Connor CM (2010) Making conservation physiology relevant to policy makers and conservation practitioners. Conserv Lett 3(3):159–166
Google Scholar
Cooke SJ, Suski CD (2008) Ecological restoration and physiology: an overdue integration. Bioscience 58(10):957–968
Google Scholar
Da Silveira NS, Niebuhr BBS, Muylaert RD, Ribeiro MC, Pizo MA (2016) Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE 11(6):19
Google Scholar
Dantzer B, Fletcher QE, Boonstra R, Sheriff MJ (2014) Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conservation Physiol 2(1):23
Google Scholar
de Bruijn R, Romero LM (2018) The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 269:11–32
PubMed
Google Scholar
Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46
Google Scholar
Fletcher RJ (2006) Emergent properties of conspecific attraction in fragmented landscapes. Am Nat 168(2):207–219
PubMed
Google Scholar
Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS (2019) Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol Evol 34(4):355–368
PubMed
Google Scholar
George AD, Connette GM, Thompson FR, Faaborg J (2017) Resource selection by an ectothermic predator in a dynamic thermal landscape. Ecol Evol 7(22):9557–9566
PubMed
PubMed Central
Google Scholar
Gigliotti LC, Diefenbach DR, Sheriff MJ (2017) Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can J Zool 95(8):539–545
Google Scholar
Gullion GW (1965) Improvements in methods for trapping and marking Ruffed Grouse. J Wildl Manag 29:109–116
Google Scholar
Gullion GW (1970) Factors affecting Ruffed Grouse populations in boreal forests of northern Minnesota, USA. Finnish Game Research 30:103–117
Google Scholar
Hale JB, Wendt RF, Halazon GC (1954) Sex and age criteria for Wisconsin Ruffed Grouse. Wisconsin Conservation Department Technical Bulletin 9:24
Google Scholar
Hebblewhite M, Merrill EH, McDonald TL (2005) Spatial decomposition of predation risk using resource selection functions: an example in a wolf-elk predator-prey system. Oikos 111(1):101–111
Google Scholar
Heinrich B (2017) Winter strategies of ruffed grouse in a mixed northern forest. Northeast Nat 24:B55–B71
Google Scholar
Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: From equations to case studies. Comput Geosci 33(10):1301–1315
Google Scholar
Hohn EO (1977) Snowshoe effect of feathering on ptarmigan feet. Condor 79(3):380–382
Google Scholar
Hunninck L, May R, Jackson CR, Palme R, Roskaft E, Sheriff MJ (2020) Consequences of climate-induced vegetation changes exceed those of human disturbance for wild impala in the Serengeti ecosystem. Conservation Physiol 8:14
Google Scholar
Jachowski DS, Kauffman MJ, Jesmer BR, Sawyer H, Millspaugh JJ (2018) Integrating physiological stress into the movement ecology of migratory ungulates: a spatial analysis with mule deer. Conservation Physiol 6:12
Google Scholar
Jimeno B, Hau M, Verhulst S (2018) Corticosterone levels reflect variation in metabolic rate, independent of “stress.” Sci Rep 8(13020):1–8
CAS
Google Scholar
Johnson CJ, Seip DR, Boyce MS (2004) A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. J Appl Ecol 41(2):238–251
Google Scholar
Kalinski A, Banbura M, Gladalski M et al (2014) Landscape patterns of variation in blood glucose concentration of nestling blue tits (Cyanistes caeruleus). Landscape Ecol 29(9):1521–1530
Google Scholar
Kittle AM, Fryxell JM, Desy GE, Hamr J (2008) The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia 157(1):163–175
PubMed
Google Scholar
Kohl MT, Stahler DR, Metz MC et al (2018) Diel predator activity drives a dynamic landscape of fear. Ecol Monogr 88(4):638–652
Google Scholar
Kordosky JR, Gese EM, Thompson CM et al (2021) Landscape of stress: tree mortality influences physiological stress and survival in a native mesocarnivore. PLoS ONE 16(7):e0253604
CAS
PubMed
PubMed Central
Google Scholar
Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148(2):132–149
CAS
PubMed
Google Scholar
Latimer CE, Zuckerberg B (2019) How extreme is extreme? Demographic approaches inform the occurrence and ecological relevance of extreme events. Ecol Monogr 89(4):15
Google Scholar
Laundre JW, Hernandez L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool 79(8):1401–1409
Google Scholar
Leblond M, Dussault C, Ouellet JP (2013) Impacts of human disturbance on large prey species: do behavioral reactions translate to fitness consequences? PLoS ONE 8(9):9
Google Scholar
Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640
Google Scholar
MacDougall-Shackleton SA, Bonier F, Romero LM, Moore IT (2019) Glucocorticoids and “Stress” Are Not Synonymous COMMENT. Integrative Organismal Biol 1(1):8
Google Scholar
MacLeod KJ, Krebs CJ, Boonstra R, Sheriff MJ (2018) Fear and lethality in snowshoe hares: the deadly effects of non-consumptive predation risk. Oikos 127(3):375–380
Google Scholar
Madliger CL, Cooke SJ, Crespi EJ et al (2016) Success stories and emerging themes in conservation physiology. Conservation Physiology 4:17
Google Scholar
Madliger CL, Love OP (2015) The power of physiology in changing landscapes: considerations for the continued integration of conservation and physiology. Integr Comp Biol 55(4):545–553
PubMed
Google Scholar
Marra PP, Holberton RL (1998) Corticosterone levels as indicators of habitat quality: effects of habitat segregation in a migratory bird during the non-breeding season. Oecologia 116(1–2):284–292
PubMed
Google Scholar
McCann NP, Zollner PA, Gilbert JH (2017) Temporal scaling in analysis of animal activity. Ecography 40(12):1436–1444
Google Scholar
Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticold metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138(3):189–199
CAS
PubMed
Google Scholar
Mohlman JL, Navara KJ, Sheriff MJ, Terhune TM II, Martin JA (2020) Validation of a noninvasive technique to quantify stress in northern bobwhite (Colinus virginianus). Conservation Physiology 8(1):coaa026
PubMed
PubMed Central
Google Scholar
Morelli TL, Daly C, Dobrowski SZ et al (2016) Managing climate change refugia for climate adaptation. PLoS ONE 11(8):17
Google Scholar
Mosser AA, Avgar T, Brown GS, Walker CS, Fryxell JM (2014) Towards an energetic landscape: broad-scale accelerometry in woodland caribou. J Anim Ecol 83(4):916–922
PubMed
Google Scholar
Mysterud A, Ostbye E (1999) Cover as a habitat element for temperate ungulates: effects on habitat selection and demography. Wildl Soc Bull 27(2):385–394
Google Scholar
Nagra CL, Meyer RK, Breitenbach RP (1963) Influence of hormones on food intake and lipid deposition in castrated pheasants. Poult Sci 42(3):770–775
Google Scholar
Pauli JN, Zuckerberg B, Whiteman JP, Porter W (2013) The subnivium: a deteriorating seasonal refugium. Front Ecol Environ 11(5):260–267
Google Scholar
Pokallus JW, Pauli JN (2016) Predation shapes the movement of a well-defended species, the North American porcupine, even when nutritionally stressed. Behav Ecol 27(2):470–475
Google Scholar
Preisler HK, Ager AA, Wisdom MJ (2006) Statistical methods for analysing responses of wildlife to human disturbance. J Appl Ecol 43(1):164–172
Google Scholar
Romero LM, Wikelski M (2001) Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events. Proc Natl Acad Sci USA 98(13):7366–7370
CAS
PubMed
PubMed Central
Google Scholar
Rosalino LM, Macdonald DW, Santos-Reis M (2004) Spatial structure and land-cover use in a low-density Mediterranean population of Eurasian badgers. Can J Zool 82(9):1493–1502
Google Scholar
Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89
CAS
PubMed
Google Scholar
Scheiber IBR, de Jong ME, Komdeur J, Pschernig E, Loonen MJJE (2017) Diel pattern of corticosterone metabolites in Arctic barnacle goslings (Branta leucopsis) under continuous natural light. PLoS ONE 12(8):1–17
Google Scholar
Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182(3):298–312
PubMed
Google Scholar
Sheriff MJ, Boonstra R, Palme R, Buck CL, Barnes BM (2017) Coping with differences in snow cover: the impact on the condition, physiology and fitness of an arctic hibernator. Conservation Physiology. https://doi.org/10.1093/conphys/cox065
Article
PubMed
PubMed Central
Google Scholar
Sheriff MJ, Bosson CO, Krebs CJ, Boonstra R (2009a) A non-invasive technique for analyzing fecal cortisol metabolites in snowshoe hares (Lepus americanus). J Comp Physiol B 179(3):305–313
CAS
PubMed
Google Scholar
Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:869–887
PubMed
Google Scholar
Sheriff MJ, Krebs CJ, Boonstra R (2009b) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78(6):1249–1258
PubMed
Google Scholar
Sheriff MJ, Krebs CJ, Boonstra R (2010) Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? Gen Comp Endocrinol 166(3):614–619
CAS
PubMed
Google Scholar
Sheriff MJ, Thaler JS (2014) Ecophysiological effects of predation risk; an integration across disciplines. Oecologia 176(3):607–611
PubMed
Google Scholar
Shipley AA (2021) Changing Winters: The Effects of Snow and Land Cover on the Behavior, Physiology, and Survival of Ruffed Grouse. The University of Wisconsin - Madison, Ph.D.
Google Scholar
Shipley AA, Cruz J, Zuckerberg B (2020) Personality differences in the selection of dynamic refugia have demographic consequences for a winter-adapted bird. Proceed Royal Soc B-Biol Sci 287(1934):10
Google Scholar
Shipley AA, Sheriff MJ, Pauli JN, Zuckerberg B (2019) Snow roosting reduces temperature-associated stress in a wintering bird. Oecologia 190(2):309–321
PubMed
Google Scholar
Squires JR, DeCesare NJ, Olson LE, Kolbe JA, Hebblewhite M, Parks SA (2013) Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biol Cons 157:187–195
Google Scholar
Stabach JA, Wittemyer G, Boone RB, Reid RS, Worden JS (2016) Variation in habitat selection by white-bearded wildebeest across different degrees of human disturbance. Ecosphere 7(8):17
Google Scholar
Thomas VG (1987) Similar winter energy strategies of grouse, hares and rabbits in northern biomes. Oikos 50(2):206–212
Google Scholar
Thompson FR, Fritzell EK (1988) Ruffed Grouse winter roost site preference and influence on energy demands. J Wildl Manag 52(3):454–460
Google Scholar
Thompson KL, Zuckerberg B, Porter WP, Pauli JN (2018) The phenology of the subnivium. Environ Res Lett 13(6):12
Google Scholar
Thompson KL, Zuckerberg B, Porter WP, Pauli JN (2021) The decline of a hidden and expansive microhabitat: the subnivium. Front Ecol Environ 19:268–273
Google Scholar
Wasser SK, Hunt KE, Brown JL et al (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120(3):260–275
CAS
PubMed
Google Scholar
Westerskov K (1965) Winter ecology of the partridge (Perdix perdix) in the Canadian prairie. Proc NZ Ecol Soc 12:23–30
Google Scholar
Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21(1):38–46
PubMed
Google Scholar
Wilson EC, Shipley AA, Zuckerberg B, Peery MZ, Pauli JN (2018) An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv Lett. https://doi.org/10.1111/conl.12614
Article
Google Scholar
Wingfield JC, Maney DL, Breuner CW et al (1998) Ecological bases of hormone-behavior interactions: The “emergency life history stage.” Am Zool 38(1):191–206
CAS
Google Scholar
Wingfield JC, Ramenofsky M (1999) Hormones and the behavioral ecology of stress. In: Balm PHM (ed) Stress Physiology in Animals. CRC Press, Boca Raton, FL, pp 1–51
Google Scholar
Wolff JO (1980) The role of habitat patchiness in the population-dynamics of snowshoe hares. Ecol Monogr 50(1):111–130
Google Scholar
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Royal Statist Soc Series B-Statist Methodol 73:3–36
Google Scholar
Zimmerman GS, Millspaugh JJ, Link WA, Woods RJ, Gutierrez RJ (2013) A flexible Bayesian hierarchical approach for analyzing spatial and temporal variation in the fecal corticosterone levels in birds when there is imperfect knowledge of individual identity. Gen Comp Endocrinol 194:64–70
CAS
PubMed
Google Scholar
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer
Google Scholar